×

The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. (English) Zbl 1352.74293

Summary: This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial by means of the extended finite element method (X-FEM) with new crack-tip enrichment functions. In the X-FEM, crack modeling is facilitated by adding a discontinuous function and crack-tip asymptotic functions to the classical finite element approximation within the framework of the partition of unity. In this work, the coupled effects of an elastic field and an electric field in piezoelectricity are considered. Corresponding to the two classes of singularities of the aforementioned interface crack problem, namely, \(\epsilon\) class and \(\kappa\) class, two classes of crack-tip enrichment functions are newly derived, and the former that exhibits oscillating feature at the crack tip is numerically investigated. Computation of the fracture parameter, i.e., the \(J\)-integral, using the domain form of the contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on benchmark interface crack problems through comparisons with analytical solutions and numerical results obtained by the classical FEM. Moreover, it is shown that the geometrical enrichment combining the mesh with local refinement is substantially better in terms of accuracy and efficiency.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Belytschko, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[2] Yazid, A survey of the extended finite element, Computer and Structures 86 pp 1141– (2008) · doi:10.1016/j.compstruc.2007.11.001
[3] Yazid, A state-of-the-art review of the X-FEM for computational fracture mechanics, Applied Mathematical Modelling 33 pp 4269– (2009) · Zbl 1172.74050 · doi:10.1016/j.apm.2009.02.010
[4] Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures (2008) · Zbl 1132.74001 · doi:10.1002/9780470697795
[5] Zhuang, Extended Finite Element Method (2014)
[6] Béchet, Application of the X-FEM to the fracture of piezoelectric materials, International Journal for Numerical Methods in Engineering 77 pp 1535– (2009) · Zbl 1158.74477 · doi:10.1002/nme.2455
[7] Bhargava, A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method, Computational Materials Science 50 pp 1834– (2011) · doi:10.1016/j.commatsci.2011.01.026
[8] Bhargava, X-FEM simulation for two-unequal-collinear cracks in 2-D finite piezoelectric specimen, International Journal of Mechanics and Materials in Design 8 pp 129– (2012) · doi:10.1007/s10999-012-9182-x
[9] Sharma, Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method, Engineering Fracture Mechanics 104 pp 114– (2013) · doi:10.1016/j.engfracmech.2013.03.012
[10] Liu, Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM, International Journal of Solids and Structures 69 pp 542– (2013)
[11] Liu, Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method, International Journal of Solids and Structures 51 pp 2167– (2014) · doi:10.1016/j.ijsolstr.2014.02.024
[12] Nguyen-Vinh, Extended finite element method for dynamic fracture of piezo-electric materials, Engineering Fracture Mechanics 92 pp 19– (2012) · doi:10.1016/j.engfracmech.2012.04.025
[13] Bui, Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading, Computational Material Science 62 pp 243– (2012) · doi:10.1016/j.commatsci.2012.05.049
[14] Nanthakumar, Detection of multiple flaws in piezoelectric structures using XFEM and level sets, Computer Methods in Applied Mechanics and Engineering 275 pp 98– (2014) · Zbl 1296.74030 · doi:10.1016/j.cma.2014.03.001
[15] Nanthakumar, Detection of flaws in piezoelectric structures using extended FEM, International Journal for Numerical Methods in Engineering 96 pp 373– (2013) · Zbl 1352.74129 · doi:10.1002/nme.4565
[16] Barsoum, On the use of isoparametric finite elements in linear fracture mechanics, International Journal for Numerical Methods in Engineering 10 pp 25– (1976) · Zbl 0321.73067 · doi:10.1002/nme.1620100103
[17] Simo, An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Computational Mechanics 12 pp 277– (1993) · Zbl 0783.73024 · doi:10.1007/BF00372173
[18] Armero, An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, International Journal of Solids and Structures 33 pp 2863– (1996) · Zbl 0924.73084 · doi:10.1016/0020-7683(95)00257-X
[19] Borja, A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Computer Methods in Applied Mechanics and Engineering 190 pp 1529– (2000) · Zbl 1003.74074 · doi:10.1016/S0045-7825(00)00176-6
[20] Oliver, On the strong discontinuity approach in finite deformation settings, International Journal for Numerical Methods in Engineering 56 pp 1051– (2003) · Zbl 1031.74010 · doi:10.1002/nme.607
[21] Radulovic, Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements, Engineering Fracture Mechanics 78 pp 2470– (2011) · doi:10.1016/j.engfracmech.2011.06.007
[22] Armero, Numerical simulation of dynamic fracture using finite elements with embedded discontinuities, International Journal Fracture 160 pp 119– (2009) · Zbl 1273.74422 · doi:10.1007/s10704-009-9413-9
[23] Linder, A strong discontinuity approach on multiple levels to model solids at failure, Computer Methods in Applied Mechanics and Engineering 253 pp 558– (2013) · Zbl 1297.74120 · doi:10.1016/j.cma.2012.07.005
[24] Rabczuk, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering 61 pp 2316– (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[25] Rabczuk, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Computer Methods in Applied Mechanics and Engineering 196 pp 2777– (2007) · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[26] Rabczuk, Discontinuous modelling of shear bands using adaptive meshfree methods, Computer Methods in Applied Mechanics and Engineering 197 pp 641– (2008) · Zbl 1169.74655 · doi:10.1016/j.cma.2007.08.027
[27] Rabczuk, Simulations of instability in dynamic fracture by the cracking particles method, Engineering Fracture Mechanics 76 pp 730– (2009) · doi:10.1016/j.engfracmech.2008.06.002
[28] Rabczuk, A simple and robust three-dimensional cracking-particle method without enrichment, Computer Methods in Applied Mechanics and Engineering 199 pp 2437– (2010) · Zbl 1231.74493 · doi:10.1016/j.cma.2010.03.031
[29] Miehe, phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering 199 pp 2765– (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[30] Miehe, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering 83 pp 1273– (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[31] Kumar, Crack propagation in piezoelectric materials under combined mechanical and electrical loadings, Acta Materialia 44 pp 173– (1996) · doi:10.1016/1359-6454(95)00175-3
[32] Kuna M FEM-Techniken zur Analyse von Rissen unter elektrischen und mechanischen Beanspruchungen, Berichte 29 1997 369 379
[33] Kuna, Finite element analyses of crack problems in piezoelectric structures, Computational Materials Science 13 pp 67– (1998) · doi:10.1016/S0927-0256(98)00047-0
[34] Kuna M Ricoeur A Theoretical investigations on the cracking of ferroelectric ceramics Smart Structures and Materials 2000: Active Materials Behavior and Mechanics, Proceedings of SPIE Newport Beach, CA 2000 3992, 185 196
[35] Linder, New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids, Computer Methods in Applied Mechanics and Engineering 200 pp 141– (2011) · Zbl 1225.74095 · doi:10.1016/j.cma.2010.07.021
[36] Linder, Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics, Journal of the Mechanics and Physics of Solids 60 pp 882– (2012) · doi:10.1016/j.jmps.2012.01.012
[37] Linder, An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics, Technische Mechanik 32 pp 53– (2012)
[38] Linder, Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials, Computer Methods in Applied Mechanics and Engineering 273 pp 143– (2014) · Zbl 1296.74121 · doi:10.1016/j.cma.2014.01.021
[39] Miehe, A phase field model of electromechanical fracture, Journal of the Mechanics and Physics of Solids 58 pp 1716– (2010) · Zbl 1200.74123 · doi:10.1016/j.jmps.2010.06.013
[40] Abdollahi, Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions, Journal of the Mechanics and Physics of Solids 60 pp 2100– (2012) · doi:10.1016/j.jmps.2012.06.014
[41] Wilson, A phase-field model for fracture in piezoelectric ceramics, International Journal Fracture 183 pp 135– (2013) · doi:10.1007/s10704-013-9881-9
[42] Kuo, Modern Theory of Anisotropic Elasticity and Applications, in: Stress Singularities of Interfacial Cracks in Bonded Piezoelectric Half-Spaces (1991)
[43] Suo, Fracture mechanics for piezoelectric ceramics, Journal of the Mechanics and Physics of Solids 40 pp 739– (1992) · Zbl 0825.73584 · doi:10.1016/0022-5096(92)90002-J
[44] Beom, Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media, International Journal of Fracture 75 pp 163– (1996) · doi:10.1007/BF00034075
[45] Qin, A closed crack tip model for interface cracks in thermopiezoelectric materials, International Journal of Solids and Structures 36 pp 2463– (1999) · Zbl 0932.74061 · doi:10.1016/S0020-7683(98)00115-2
[46] Gao, Collinear permeable cracks in thermopiezoelectric materials, Mechanics of Materials 33 pp 1– (2001) · doi:10.1016/S0167-6636(00)00033-8
[47] Beom, Conducting cracks in dissimilar piezoelectric media, International Journal of Fracture 118 pp 285– (2002) · doi:10.1023/A:1023381215338
[48] Ou, On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials, International Journal of Solids and Structures 40 pp 7499– (2003) · Zbl 1063.74043 · doi:10.1016/j.ijsolstr.2003.08.021
[49] Ma, Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials, International Journal of Fracture 110 pp 263– (2001) · doi:10.1023/A:1010805704212
[50] Gu, Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts, International Journal of Solids and Structures 39 pp 1743– (2002) · Zbl 1040.74042 · doi:10.1016/S0020-7683(02)00013-6
[51] Ou, Singularity parameters epsilon and kappa for interface cracks in transversely isotropic piezoelectric biomaterials, International Journal of Fracture 119 pp L41– (2003) · doi:10.1023/A:1023956309624
[52] Wang, A moving conducting crack at the interface of two dissimilar piezoelectric materials, International Journal of Solids and Structures 40 pp 2381– (2003) · Zbl 1087.74616 · doi:10.1016/S0020-7683(03)00060-X
[53] Gao, Periodic permeable interface cracks in piezoelectric materials, International Journal of Solids and Structures 41 pp 323– (2004) · Zbl 1060.74594 · doi:10.1016/j.ijsolstr.2003.09.044
[54] Govorukha, On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound, International Journal of Solids and Structures 43 pp 1979– (2006) · Zbl 1121.74363 · doi:10.1016/j.ijsolstr.2005.04.009
[55] Li, Solution for a semi-permeable interface crack between two dissimilar piezoelectric materials, ASME Journal of Applied Mechanics 74 pp 833– (2007) · doi:10.1115/1.2711232
[56] Lapusta, Limited permeable crack moving along the interface of a piezoelectric bi-material, European Journal of Mechanics A-Solids 30 pp 639– (2011) · Zbl 1278.74154 · doi:10.1016/j.euromechsol.2011.04.005
[57] Herrmann, On contact zone models for an electrically impermeable interface crack in a piezoelectric biomaterial, International Journal of Fracture 111 pp 203– (2001) · doi:10.1023/A:1012269616735
[58] Herrmann, Fracture mechanical assessment of interface cracks with contact zones in piezoelectric bimaterials under thermoelectromechanical loadings II. Electrically impermeable interface cracks, International Journal of Solids and Structures 40 pp 4219– (2003) · Zbl 1054.74714 · doi:10.1016/S0020-7683(03)00201-4
[59] Govorukha, The interface crack problem for a piezoelectric semi-infinite strip under concentrated electromechanical loading, Engineering Fracture Mechanics 71 pp 13– (2004) · doi:10.1016/j.engfracmech.2003.12.005
[60] Loboda, Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial, International Journal of Solids and Structures 44 pp 5538– (2007) · Zbl 1178.74143 · doi:10.1016/j.ijsolstr.2007.01.013
[61] Liew, Modeling of 3D transversely piezoelectric and elastic bimaterials using the boundary element method, Computational Mechanics 29 pp 151– (2002) · Zbl 1024.74045 · doi:10.1007/s00466-002-0328-9
[62] Guo, Simulation of interface cracking in piezoelectric layers, International Journal of Nonlinear Sciences and Numerical Simulation 5 pp 235– (2004) · Zbl 1401.74272 · doi:10.1515/IJNSNS.2004.5.3.235
[63] Govorukha, Asymptotic fields in the finite element analysis of electrically permeable interface cracks in piezoelectric bimaterials, Archive of Applied Mechanics 74 pp 92– (2004) · Zbl 1158.74450 · doi:10.1007/s00419-004-0340-y
[64] Govorukha, An analytically-numerical approach for the analysis of an interface crack with a contact zone in a piezoelectric bimaterial compound, Archive of Applied Mechanics 78 pp 575– (2008) · Zbl 1237.74160 · doi:10.1007/s00419-007-0179-0
[65] Scherzer, Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric materials, International Journal of Fracture 127 pp 61– (2004) · Zbl 1187.74200 · doi:10.1023/B:FRAC.0000035056.34258.4b
[66] Benedetti, Fast BEM for the analysis of damaged structures with bonded piezoelectric sensors, Computer Methods in Applied Mechanics and Engineering 199 pp 490– (2010) · Zbl 1227.74102 · doi:10.1016/j.cma.2009.09.007
[67] Sladek, Meshless local Petrov-Galerkin method for plane piezoelectricity, Computers Materials and Continua 4 pp 109– (2006) · Zbl 1180.74065
[68] Sladek, Analysis of an interface crack between two dissimilar piezoelectric solids, Engineering Fracture Mechanics 89 pp 114– (2012) · doi:10.1016/j.engfracmech.2012.04.032
[69] Lei, Time-domain BEM for transient interfacial crack problems in anisotropic piezoelectric bi-materials, International Journal of Fracture 174 pp 163– (2012) · doi:10.1007/s10704-012-9686-2
[70] Lei, Determination of dynamic intensity factors and time-domain BEM for interfacial cracks in anisotropic piezoelectric materials, International Journal of Solids and Structures 50 pp 1482– (2013) · doi:10.1016/j.ijsolstr.2013.01.018
[71] Li, Gao W. 2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM, International Journal of Solids and Structures 51 pp 2096– (2014) · doi:10.1016/j.ijsolstr.2014.02.014
[72] Kuna, Finite element analyses of cracks in piezoelectric structures: a survey, Archive of Applied Mechanics 76 pp 725– (2006) · Zbl 1161.74474 · doi:10.1007/s00419-006-0059-z
[73] Kuna, Fracture mechanics of piezoelectric materials-where are we right now, Engineering Fracture Mechanics 77 pp 309– (2010) · doi:10.1016/j.engfracmech.2009.03.016
[74] Laborde, High-order extended finite element method for cracked domains, International Journal for Numerical Methods in Engineering 64 pp 1033– (2005) · Zbl 1181.74136 · doi:10.1002/nme.1370
[75] Fang, Fracture Mechanics of Piezoelectric and Ferroelectric Solids (2013) · Zbl 1303.74002 · doi:10.1007/978-3-642-30087-5
[76] Asadpoure, Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method, International Journal for Numerical Methods in Engineering 69 pp 2150– (2007) · Zbl 1194.74358 · doi:10.1002/nme.1839
[77] Sukumar, Partition of unity enrichment for bimaterial interface cracks, International Journal for Numerical Methods in Engineering 59 pp 1075– (2004) · Zbl 1041.74548 · doi:10.1002/nme.902
[78] Smelser, On the J-integral for bi-material bodies, International Journal of Fracture 13 pp 382– (1977)
[79] Sun, On strain energy release rates for an interfacial crack in bimaterial media, Engineering Fracture Mechanics 28 pp 13– (1987) · doi:10.1016/0013-7944(87)90115-9
[80] Raju, Convergence of strain energy release rate components for edge delaminated composite laminates, Engineering Fracture Mechanics 30 pp 383– (1988) · doi:10.1016/0013-7944(88)90196-8
[81] Sun, Strain energy release rates of an interfacial cracks between two orthotropic solids, Journal of Composite Materials 23 pp 460– (1989) · doi:10.1177/002199838902300503
[82] Rojas-Díaz, Fracture in magnetoelectroelastic materials using the extended finite element, International Journal for Numerical Methods in Engineering 88 pp 1238– (2011) · Zbl 1242.74157 · doi:10.1002/nme.3219
[83] Bhargava, Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectroelastic specimen, Computational Materials Science 60 pp 75– (2012) · doi:10.1016/j.commatsci.2012.03.013
[84] Hattori, New anisotropic crack-tip enrichment functions for the extended finite element method, Computational Mechanics 50 pp 591– (2012) · Zbl 1312.74029 · doi:10.1007/s00466-012-0691-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.