×

Saddle-point approximations, integrodifference equations, and invasions. (English) Zbl 1208.92087

Summary: Invasion, the growth in numbers and spatial spread of a population over time, is a fundamental process in ecology. Governments and businesses expend vast sums to prevent and control invasions of pests and pestilences and to promote invasions of endangered species and biological control agents. Many mathematical models of biological invasions use nonlinear integrodifference equations to describe the growth and dispersal processes and to predict the speed of invasion fronts. Linear models have received less attention, perhaps because they are difficult to simulate for large times.
We use the saddle-point method, alias the method of steepest descent, to derive asymptotic approximations for the solutions of linear integrodifference equations. We work through five examples, for Gaussian, Laplace, and uniform dispersal kernels in one dimension and for asymmetric Gaussian and radially symmetric Laplace kernels in two dimensions. Our approximations are extremely close to the exact solutions, even for intermediate times. We also employ an empirical saddle-point approximation to predict densities using dispersal data. We use our approximations to examine the effects of censored dispersal data on estimates of invasion speed and population density.

MSC:

92D40 Ecology
39B99 Functional equations and inequalities
65R99 Numerical methods for integral equations, integral transforms
65Q99 Numerical methods for difference and functional equations, recurrence relations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, M., 1991. Properties of some density-dependent integrodifference equation population models. Math. Biosci. 104, 135–157. · Zbl 0726.92026 · doi:10.1016/0025-5564(91)90034-G
[2] Britton, N.F., 1986. Reaction-Diffusion Equations and Their Applications to Biology. Academic, London. · Zbl 0602.92001
[3] Brown, J.K.M., Hovmoller, M.S., 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541. · doi:10.1126/science.1072678
[4] Bullock, J.M., Clarke, R.T., 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521. · doi:10.1007/PL00008876
[5] Butler, R.W., 2007. Saddlepoint Approximations with Applications. Cambridge University Press, Cambridge. · Zbl 1183.62001
[6] Cain, M.L., Milligan, B.G., Strand, A.E., 2000. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227. · doi:10.2307/2656714
[7] Caswell, H., Lensink, R., Neubert, M.G., 2003. Demography and dispersal: life table response experiments for invasion speed. Ecology 84, 1968–1978. · doi:10.1890/02-0100
[8] Clark, J.S., 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224. · doi:10.1086/286162
[9] Clark, J.S., Horvath, L., Lewis, M., 2001. On the estimation of spread rate for a biological population. Stat. Probab. Lett. 51, 225–234. · Zbl 0965.62094 · doi:10.1016/S0167-7152(00)00123-1
[10] Cobbold, C.A., Lewis, M.A., Lutscher, F., Roland, J., 2005. How parasitism affects critical patch-size in a host–parasitoid model: application to the forest tent caterpillar. Theor. Popul. Biol. 67, 109–125. · Zbl 1072.92048 · doi:10.1016/j.tpb.2004.09.004
[11] Cohen, A., 1991. A Padé approximant to the inverse Langevin function. Rheol. Acta 30, 270–273. · doi:10.1007/BF00366640
[12] Daniels, H.E., 1954. Saddlepoint approximations in statistics. Ann. Math. Stat. 25, 631–650. · Zbl 0058.35404 · doi:10.1214/aoms/1177728652
[13] Domb, C., Offenbacher, E.L., 1978. Random walks and diffusion. Am. J. Phys. 46, 49–56. · doi:10.1119/1.11101
[14] Fagan, W.F., Lewis, M., Neubert, M.G., Aumann, C., Apple, J.L., Bishop, J.G., 2005. When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens. Am. Nat. 166, 669–685. · doi:10.1086/497621
[15] Feller, W., 1971. An Introduction to Probability Theory and its Applications, vol. II. Wiley, New York. · Zbl 0219.60003
[16] Feuerverger, A., 1989. On the empirical saddlepoint approximation. Biometrika 76, 457–464. · Zbl 0674.62019 · doi:10.1093/biomet/76.3.457
[17] Fisher, R.A., 1937. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369. · JFM 63.1111.04
[18] Fort, J., 2007. Fronts from complex two-dimensional dispersal kernels: Theory and application to Reid’s paradox. J. Appl. Phys. 101, 094701. · doi:10.1063/1.2733631
[19] Giffin, W.C., 1975. Transform Techniques for Probability Modeling. Academic, New York. · Zbl 0387.90002
[20] Good, I.J., 1957. Saddle-point methods for the multinomial distribution. Ann. Math. Stat. 28, 861–881. · Zbl 0091.14302 · doi:10.1214/aoms/1177706790
[21] Goutis, C., Casella, G., 1999. Explaining the saddlepoint approximation. Am. Stat. 53, 216–224. · Zbl 04554849 · doi:10.2307/2686100
[22] Hart, D.R., Gardner, R.H., 1997. A spatial model for the spread of invading organisms subject to competition. J. Math. Biol. 35, 935–948. · Zbl 0883.92027 · doi:10.1007/s002850050083
[23] Higgins, S.I., Richardson, D.M., 1999. Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am. Nat. 153, 464–475. · doi:10.1086/303193
[24] Hughes, B.D., 1995. Random Walks and Random Environments. Volume 1: Random Walks. Oxford University Press, Oxford. · Zbl 0820.60053
[25] Jacquemyn, H., Brys, R., Neubert, M.G., 2005. Fire increases invasive spread of Molinia caerulea mainly through changes in demographic parameters. Ecol. Appl. 15, 2097–2108. · doi:10.1890/04-1762
[26] Jakeman, E., Pusey, P.N., 1976. A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 24, 806–814. · doi:10.1109/TAP.1976.1141451
[27] Kot, M., 1992. Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413–436. · Zbl 0825.92126 · doi:10.1007/BF00173295
[28] Kot, M., Schaffer, W.M., 1986. Discrete-time growth–dispersal models. Math. Biosci. 80, 109–136. · Zbl 0595.92011 · doi:10.1016/0025-5564(86)90069-6
[29] Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042. · doi:10.2307/2265698
[30] Kotz, S., Kozubowski, T.J., Podgorski, K., 2001. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkhäuser, Boston. · Zbl 0977.62003
[31] Krkosek, M., Lauzon-Guay, J.S., Lewis, M.A., 2007. Relating dispersal and range expansion of California sea otters. Theor. Popul. Biol. 71, 401–407. · Zbl 1125.92057 · doi:10.1016/j.tpb.2007.01.008
[32] Lewis, M.A., 1997. Variability, patchiness, and jump dispersal in the spread of an invading population. In D. Tilman, P. Kareiva (Eds.) Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, pp. 46–69. Princeton University Press, Princeton.
[33] Lewis, M.A., Neubert, M.G., Caswell, H., Clark, J., Shea, K., 2006. A guide to calculating discrete-time invasion rates from data. In M.W. Cadotte, S.M. McMahon, T. Fukami (Eds.) Conceptual Ecology and Invasions Biology: Reciprocal Approaches to Nature, pp. 169–192. Springer, Dordrecht.
[34] Lobatschewsky, N., 1842. Probabilité des résultats moyens tirés d’observations répetées. J. Reine Angew. Math. 24, 164–170. · ERAM 024.0722cj · doi:10.1515/crll.1842.24.164
[35] Lui, R., 1983. Existence and stability of travelling wave solutions of a nonlinear integral operator. J. Math. Biol. 16, 199–220. · Zbl 0514.45006 · doi:10.1007/BF00276502
[36] Lusk, E.J., Wright, H., 1982. Deriving the probability density for sums of uniform random variables. Am. Stat. 36, 128–130. · doi:10.2307/2684025
[37] Lutscher, F., 2007. A short note on short dispersal events. Bull. Math. Biol. 69, 1615–1630. · Zbl 1298.92085 · doi:10.1007/s11538-006-9182-9
[38] McKay, A.T., 1932. A Bessel function distribution. Biometrika 24, 39–44. · Zbl 0004.40804
[39] Mistro, D.C., Rodrigues, L.A.D., Ferreira, W.C., 2005. The Africanized honey bee dispersal: a mathematical zoom. Bull. Math. Biol. 67, 281–312. · Zbl 1334.92465 · doi:10.1016/j.bulm.2004.07.006
[40] Mollison, D., 1991. Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287. · Zbl 0743.92029 · doi:10.1016/0025-5564(91)90009-8
[41] Murray, J.D., 1974. Asymptotic Analysis. Oxford University Press, Oxford. · Zbl 0287.41016
[42] Nathan, R., Perry, G., Cronin, J.T., Strand, A.E., Cain, M.L., 2003. Methods for estimating long-distance dispersal. Oikos 103, 261–273. · doi:10.1034/j.1600-0706.2003.12146.x
[43] Neubert, M.G., Caswell, H., 2000. Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–1628. · doi:10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2
[44] Neubert, M.G., Parker, I.M., 2004. Projecting rates of spread for invasive species. Risk Anal. 24, 817–831. · doi:10.1111/j.0272-4332.2004.00481.x
[45] Neubert, M.G., Kot, M., Lewis, M.A., 1995. Dispersal and pattern formation in a discrete-time predator–prey model. Theor. Popul. Biol. 48, 7–43. · Zbl 0863.92016 · doi:10.1006/tpbi.1995.1020
[46] Okubo, A., 1980. Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin. · Zbl 0422.92025
[47] Paolella, M.S., 2007. Intermediate Probability: A Computational Approach. Wiley, Chichester. · Zbl 1149.60002
[48] Petrova, S.S., Solov’ev, A.D., 1997. The origin of the method of steepest descent. Hist. Math. 24, 361–375. · Zbl 0894.01006 · doi:10.1006/hmat.1996.2146
[49] Petrovskii, S.V., Li, B.-L., 2006. Exactly Solvable Models of Biological Invasions. Chapman & Hall/CRC, Boca Raton. · Zbl 1151.92034
[50] Powell, J.A., Slapnicar, I., van der Werf, W., 2005. Epidemic spread of a lesion-forming plant pathogen–analysis of a mechanistic model with infinite age structure. Linear Algebra Appl. 398, 117–140. · Zbl 1062.92064 · doi:10.1016/j.laa.2004.10.020
[51] Radcliffe, J., Rass, L., 1997. Discrete time spatial models arising in genetics, evolutionary game theory, and branching processes. Math. Biosci. 140, 101–129. · Zbl 0882.92022 · doi:10.1016/S0025-5564(97)00154-5
[52] Reid, N., 1988. Saddlepoint methods and statistical inference. Stat. Sci. 3, 213–227. · Zbl 0955.62541 · doi:10.1214/ss/1177012906
[53] Renshaw, E., 2000. Applying the saddlepoint approximation to bivariate stochastic processes. Math. Biosci. 168, 57–75. · Zbl 0978.92022 · doi:10.1016/S0025-5564(00)00037-7
[54] Rényi, A., 1970. Probability Theory. North-Holland, Amsterdam.
[55] Shaw, M.W., 1995. Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. Lond. B 259, 243–248. · doi:10.1098/rspb.1995.0036
[56] Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.
[57] Shigesada, N., Kawasaki, K., 2002. Invasion and range expansion of species: effects of long-distance dispersal. In J.M. Bullock, R.E. Kenward, R.S. Hails (Eds.) Dispersal Ecology, pp. 350–373. Blackwell, Malden.
[58] Skarpaas, O., Shea, K., 2007. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Nat. 170, 421–430. · doi:10.1086/519854
[59] Skellam, J.G., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218. · Zbl 0043.14401
[60] Tufto, J., Ringsby, T.H., Dhondt, A.A., Adriaensen, F., Matthysen, E., 2005. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26. · doi:10.1086/426698
[61] Weinberger, H.F., 1978. Asymptotic behavior of a model in population genetics. In J. Chadam (Ed.) Nonlinear Partial Differential Equations and Applications, pp. 47–98. Springer, New York. · Zbl 0383.35034
[62] Weinberger, H.F., 1982. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396. · Zbl 0529.92010 · doi:10.1137/0513028
[63] Willson, M.F., 1992. The ecology of seed dispersal. In M. Fenner (Ed.) Seeds: The Ecology of Regeneration in Plant Communities, pp. 61–85. CAB International, Wallingford.
[64] Zayed, A.I., 1996. Handbook of Function and Generalized Function Transformations. CRC Press, Boca Raton. · Zbl 0851.44002
[65] Zhang, S., Jin, J., 1996. Computation of Special Functions. Wiley, New York. · Zbl 0865.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.