×

A class of analytic solutions for verification and convergence analysis of linear and nonlinear fluid-structure interaction algorithms. (English) Zbl 1439.74109

Summary: Fluid-structure interaction (FSI) problems are pervasive in the computational engineering community. The need to address challenging FSI problems has led to the development of a broad range of numerical methods addressing a variety of application-specific demands. While a range of numerical and experimental benchmarks are present in the literature, few solutions are available that enable both verification and spatiotemporal convergence analysis. In this paper, we introduce a class of analytic solutions to FSI problems involving shear in channels and pipes. Comprised of 16 separate analytic solutions, our approach is permuted to enable progressive verification and analysis of FSI methods and implementations, in two and three dimensions, for static and transient scenarios as well as for linear and hyperelastic solid materials. Results are shown for a range of analytic models exhibiting progressively complex behavior. The utility of these solutions for analysis of convergence behavior is further demonstrated using a previously published monolithic FSI technique. The resulting class of analytic solutions addresses a core challenge in the development of novel FSI algorithms and implementations, providing a progressive testbed for verification and detailed convergence analysis.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
74S05 Finite element methods applied to problems in solid mechanics

Software:

MGRIT; CHeart; MUMPS; CMPGRD
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (1974) · Zbl 0292.76018
[2] Donea, J.; Giuliani, S.; Halleux, J.-P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 33, 1-3, 689-723 (1982) · Zbl 0508.73063
[3] Hughes, T. J.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29, 3, 329-349 (1981) · Zbl 0482.76039
[4] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, (Advances in Applied Mechanics, Vol. 28 (1991), Elsevier), 1-44 · Zbl 0747.76069
[5] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94, 3, 353-371 (1992) · Zbl 0745.76045
[6] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 3, 247-267 (2011) · Zbl 1398.76128
[7] Hoffman, J.; Jansson, J.; Stöckli, M., Unified continuum modeling of fluid-structure interaction, Math. Models Methods Appl. Sci., 21, 03, 491-513 (2011) · Zbl 1315.74012
[8] Jansson, J.; Degirmenci, N. C.; Hoffman, J., Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem, Int. J. Numer. Methods Biomed. Eng., 33, 9, Article e2851 pp. (2017)
[9] Peskin, C. S., Flow patterns around heart valves: a digital computer method for solving the equations of motion, IEEE Trans. Biomed. Eng., 4, 316-317 (1973)
[10] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[11] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[12] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[13] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 25, 5, 755-794 (1999) · Zbl 1137.76592
[14] Gil, A. J.; Carreño, A. A.; Bonet, J.; Hassan, O., The immersed structural potential method for haemodynamic applications, J. Comput. Phys., 229, 22, 8613-8641 (2010) · Zbl 1198.92010
[15] Gil, A. J.; Carreno, A. A.; Bonet, J.; Hassan, O., An enhanced immersed structural potential method for fluid-structure interaction, J. Comput. Phys., 250, 178-205 (2013) · Zbl 1349.76608
[16] Steger, J. L.; Dougherty, F. C.; Benek, J. A., A Chimera grid scheme, (Advances in Grid Generation, Vol. ASME FED-5 (1983)), 59-69
[17] Steger, J. L.; Benek, J. A., On the use of composite grid schemes in computational aerodynamics, Comput. Methods Appl. Mech. Engrg., 64, 1-3, 301-320 (1987) · Zbl 0607.76061
[18] Chesshire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1, 1-64 (1990) · Zbl 0709.65090
[19] Houzeaux, G.; Codina, R., A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 192, 31-32, 3343-3377 (2003) · Zbl 1054.76049
[20] Wall, W. A.; Gamnitzer, P.; Gerstenberger, A., Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas, Int. J. Comput. Fluid Dyn., 22, 6, 411-427 (2008) · Zbl 1184.76732
[21] M. Balmus, A. Massing, J. Hoffman, R. Razavi, D. Nordsletten, A partition of unity approach to fluid mechanics and fluid-structure interaction, Comput. Methods Appl. Mech. Engrg. (accepted) arXiv preprint arXiv:1902.06168 URL https://arxiv.org/abs/1902.06168. · Zbl 1439.76048
[22] Schreiber, R.; Keller, H. B., Driven cavity flows by efficient numerical techniques, J. Comput. Phys., 49, 2, 310-333 (1983) · Zbl 0503.76040
[23] Schreiber, R.; Keller, H., Spurious solutions in driven cavity calculations, J. Comput. Phys., 49, 165-172 (1983) · Zbl 0502.76044
[24] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 2, 308-323 (1985) · Zbl 0582.76038
[25] Ghattas, O.; Li, X., A variational finite element method for stationary nonlinear fluid-solid interaction, J. Comput. Phys., 121, 2, 347-356 (1995) · Zbl 0924.76057
[26] Wall, W. A., Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen (1999), Institut für Baustatik, Universität Stuttgart, (Ph.D. thesis)
[27] Mok, D., Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion (2001), Institut für Baustatik, Universität Stuttgart, (Ph.D. thesis)
[28] Turek, S.; Hron, J., Proposal for numerical benchmarkingof fluid-structure interaction between an elastic object and laminar incompressible flow, (Fluid-Structure Interaction (2006), Springer), 371-385 · Zbl 1323.76049
[29] Bathe, K.-J.; Ledezma, G. A., Benchmark problems for incompressible fluid flows with structural interactions, Comput. Struct., 85, 11-14, 628-644 (2007)
[30] Hessenthaler, A.; Gaddum, N.; Holub, O.; Sinkus, R.; Röhrle, O.; Nordsletten, D., Experiment for validation of fluid-structure interaction models and algorithms, Int. J. Numer. Methods Biomed. Eng. (2017)
[31] Heil, M.; Hazel, A. L.; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Comput. Mech., 43, 1, 91-101 (2008) · Zbl 1309.76126
[32] Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M., Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches, (Fluid Structure Interaction II (2011), Springer), 413-424 · Zbl 1215.76061
[33] Bertram, C.; Tscherry, J., The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes, J. Fluids Struct., 22, 8, 1029-1045 (2006)
[34] Gomes, J. P.; Lienhart, H., Experimental study on a fluid-structure interaction reference test case, (Fluid-Structure Interaction I - Modelling, Simulation, Optimization. Fluid-Structure Interaction I - Modelling, Simulation, Optimization, Lecture Notes in Computational Science and Engineering, vol. 53 (2006), Springer), 356-370
[35] Idelsohn, S.; Marti, J.; Souto-Iglesias, A.; Onate, E., Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM, Comput. Mech., 43, 1, 125-132 (2008) · Zbl 1177.74140
[36] Gomes, J. P.; Lienhart, H., Experimental benchmark: Self-excited fluid-structure interaction test cases, (Fluid-Structure Interaction II - Modelling, Simulation, Optimization. Fluid-Structure Interaction II - Modelling, Simulation, Optimization, Lecture Notes in Computational Science and Engineering, vol. 73 (2010), Springer), 383-411 · Zbl 1210.74069
[37] De Nayer, G.; Kalmbach, A.; Breuer, M.; Sicklinger, S.; Wüchner, R., Flow past a cylinder with a flexible splitter plate: A complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a), Comput. & Fluids, 99, 18-43 (2014)
[38] Hessenthaler, A.; Röhrle, O.; Nordsletten, D., Validation of a non-conforming monolithic fluid-structure interaction method using phase-contrast MRI, Int. J. Numer. Methods Biomed. Eng., 33, 8 (2017)
[39] Steinberg, S.; Roache, P. J., Symbolic manipulation and computational fluid dynamics, J. Comput. Phys., 57, 2, 251-284 (1985) · Zbl 0588.76015
[40] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 1, 4-10 (2002)
[41] Salari, K.; Knupp, P., Code Verification by the Method of Manufactured SolutionsTech. rep. (2000), Sandia National Laboratories, Sandia National Laboratories: Sandia National Laboratories, Sandia National Laboratories Albuquerque, NM 87185 (US), Livermore, CA 94550 (US)
[42] Ethier, C.; Steinman, D., Exact fully 3D Navier-Stokes solutions for benchmarking, Internat. J. Numer. Methods Fluids, 19, 5, 369-375 (1994) · Zbl 0814.76031
[43] Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127, 3, 553-563 (1955)
[44] Nordsletten, D.; Kay, D.; Smith, N., A non-conforming monolithic finite element method for problems of coupled mechanics, J. Comput. Phys., 229, 20, 7571-7593 (2010) · Zbl 1425.74162
[45] Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N. P.; Nordsletten, D. A., Multiphysics computational modeling in CHeart, SIAM J. Sci. Comput., 38, 3, C150-C178 (2016) · Zbl 1358.92015
[46] Hughes, T. J.; Wells, G. N., Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 194, 9-11, 1141-1159 (2005) · Zbl 1091.76035
[47] Moghadam, M. E.; Bazilevs, Y.; Hsia, T.-Y.; Vignon-Clementel, I. E.; Marsden, A. L., A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech., 48, 3, 277-291 (2011) · Zbl 1398.76102
[48] Hessenthaler, A.; Friedhoff, S.; Röhrle, O.; Nordsletten, D. A., 3D Fluid-Structure Interaction Experiment and Benchmark Results, PAMM, 16, 1, 451-452 (2016)
[49] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184, 2-4, 501-520 (2000) · Zbl 0956.65017
[50] Shamanskii, V., A modification of Newton’s method, Ukr. Math. Bull., 19, 1, 118-122 (1967) · Zbl 0176.13802
[51] Bauchau, O.; Craig, J., Euler-Bernoulli beam theory, (Structural Analysis (2009), Springer), 173-221
[52] Li, A. E.; Kamel, I.; Rando, F.; Anderson, M.; Kumbasar, B.; Lima, J. A.; Bluemke, D. A., Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age, Amer. J. Roentgenol., 182, 3, 593-597 (2004)
[53] Reymond, P.; Crosetto, P.; Deparis, S.; Quarteroni, A.; Stergiopulos, N., Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models, Med. Eng. Phys., 35, 6, 784-791 (2013)
[54] Womersley, J., Oscillatory Flow in Arteries: the Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission, Phys. Med. Biol., 2, 2, 178-187 (1957)
[55] Landajuela, M.; Vidrascu, M.; Chapelle, D.; Fernández, M. A., Coupling schemes for the FSI forward prediction challenge: comparative study and validation, Int. J. Numer. Methods Biomed. Eng., 33, 4, Article e2813 pp. (2017)
[56] Friedhoff, S.; Falgout, R. D.; Kolev, T. V.; MacLachlan, S.; Schroder, J. B., A multigrid-in-time algorithm for solving evolution equations in parallelTech. rep. (2012), Lawrence Livermore National Lab.(LLNL): Lawrence Livermore National Lab.(LLNL) Livermore, CA (United States)
[57] Falgout, R. D.; Friedhoff, S.; Kolev, T. V.; MacLachlan, S. P.; Schroder, J. B., Parallel time integration with multigrid, SIAM J. Sci. Comput., 36, 6, C635-C661 (2014) · Zbl 1310.65115
[58] Dobrev, V.; Kolev, T. V.; Petersson, N.; Schroder, J., Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39, 5, S501-S527 (2017) · Zbl 1416.65329
[59] Southworth, B. S., Necessary conditions and tight two-level convergence bounds for Parareal and multigrid reduction in time, SIAM J. Matrix Anal. Appl. (2019) · Zbl 1420.65039
[60] A. Hessenthaler, B.S. Southworth, D. Nordsletten, O. Röhrle, R.D. Falgout, J.B. Schroder, Multilevel convergence analysis of multigrid-reduction-in-time, SIAM J. Sci. Comput. (accepted) arXiv preprint arXiv:1812.11508 URL https://arxiv.org/abs/1812.11508. · Zbl 1513.65345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.