×

Quasi-closed elements in fuzzy posets. (English) Zbl 1480.06001

Summary: We generalize the notion of quasi-closed element to fuzzy posets in two stages: First, in the crisp style in which each element in a given universe either is quasi-closed or not. Second, in the graded style by defining degrees to which an element is quasi-closed. We discuss the different possible definitions and comparing them with each other. Finally, we show that the most general one has good properties to be used when we have a complete fuzzy lattice as a frame.

MSC:

06A06 Partial orders, general
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wild, M., The joy of implications, aka pure horn formulas: Mainly a survey, Theoret. Comput. Sci., 658, 264-292 (2017) · Zbl 1418.03144
[2] Lloyd, J. W., Foundations of Logic Programming (1984), Springer-Verlag New York Inc.: Springer-Verlag New York Inc. New York, NY, USA · Zbl 0547.68005
[3] Ceberio, M.; Kreinovich, V.; Chopra, S.; Longpré, L.; Nguyen, H. T.; Ludäscher, B.; Baral, C., Interval-type and affine arithmetic-type techniques for handling uncertainty in expert systems, J. Comput. Appl. Math., 199, 2, 403-410 (2007) · Zbl 1106.68101
[4] Singh, H. R.; Biswas, S. K.; Purkayastha, B., A neuro-fuzzy classification technique using dynamic clustering and GSS rule generation, J. Comput. Appl. Math., 309, 683-694 (2017) · Zbl 1385.68036
[5] Grätzer, G.; Wehrung, F., Lattice Theory: Special Topics and Applications (2016), Springer International Publishing: Springer International Publishing Switzerland
[6] Bertet, K.; Demko, C.; Viaud, J.-F.; Guérin, C., Lattices, closures systems and implication bases: A survey of structural aspects and algorithms, Theoret. Comput. Sci., 743, 93-109 (2018) · Zbl 1398.68510
[7] Fagin, R., Functional dependencies in a relational database and propositional logic, IBM J. Res. Dev., 21, 6, 534-544 (1977) · Zbl 0366.68022
[8] Beeri, C.; Bernstein, P. A., Computational problems related to the design of normal form relational schemas, ACM Trans. Database Syst., 4, 30-59 (1979)
[9] Maier, D., Minimum covers in relational database model, J. ACM, 27, 4, 664-674 (1980) · Zbl 0466.68085
[10] Mora, A.; Cordero, P.; Enciso, M.; Fortes, I.; Aguilera, G., Closure via functional dependence simplification, Int. J. Comput. Math., 89, 4, 510-526 (2012) · Zbl 1257.68064
[11] Benito-Picazo, F.; Cordero, P.; Enciso, M.; Mora, A., Minimal generators, an affordable approach by means of massive computation, J. Supercomput., 75, 1350-1367 (2019)
[12] Cordero, P.; Enciso, M.; Mora, A.; de Guzmán, I. P., A tableaux-like method to infer all minimal keys, Log. J. IGPL, 22, 6, 1019-1044 (2014) · Zbl 1407.68126
[13] Cordero, P.; Enciso, M.; Mora, A.; Ojeda-Aciego, M.; Rossi, C., Knowledge discovery in social networks by using a logic-based treatment of implications, Knowl.-Based Syst., 87, 16-25 (2015)
[14] Bertet, K.; Monjardet, B., The multiple facets of the canonical direct unit implicational basis, Theoret. Comput. Sci., 411, 22-24, 2155-2166 (2010) · Zbl 1209.68187
[15] Rodríguez-Lorenzo, E.; Bertet, K.; Cordero, P.; Enciso, M.; Mora, A., Direct-optimal basis computation by means of the fusion of simplification rules, Discrete Appl. Math., 249, 106-119 (2018) · Zbl 1398.68520
[16] Rodríguez-Lorenzo, E.; Cordero, P.; Enciso, M.; Bonilla, A. M., Canonical dichotomous direct bases, Inform. Sci., 376, 39-53 (2017) · Zbl 1428.68291
[17] Adaricheva, K. V., Optimum basis of finite convex geometry, Discrete Appl. Math., 230, 11-20 (2017) · Zbl 1423.06012
[18] Guigues, J. L.; Duquenne, V., Famille minimale d’implications informatives résultant d’un tableau de données binaires, Math. Sci. Hum., 24, 95, 5-18 (1986)
[19] Ganter, B.; Wille, R., Formal Concept Analysis: Mathematical Foundation (1999), Springer
[20] Kuznetsov, S. O.; Obiedkov, S. A., Some decision and counting problems of the Duquenne-Guigues basis of implications, Discrete Appl. Math., 156, 11, 1994-2003 (2008) · Zbl 1160.68031
[21] Lattice Theory: Special Topics and Applications, Vol. 2 (2016), Birkhäuser
[22] Jezková, L.; Cordero, P.; Enciso, M., Fuzzy functional dependencies: A comparative survey, Fuzzy Sets and Systems, 317, 88-120 (2017) · Zbl 1392.03037
[23] Cordero, P.; Enciso, M.; Mora, A.; Vychodil, V., Parameterized simplification logic: Reasoning with implications and classes of closure operators, Int. J. Gen. Syst., 49, 7, 724-746 (2020)
[24] Pollandt, S., Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten (1997), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0870.06008
[25] Vychodil, V., Computing sets of graded attribute implications with witnessed non-redundancy, Inform. Sci., 351, 90-100 (2016) · Zbl 1398.68560
[26] Belohlavek, R., Fuzzy Relational Systems: Foundations and Principles (2002), Kluwer Academic Publishers · Zbl 1067.03059
[27] Hájek, P., (Metamathematics of Fuzzy Logic. Metamathematics of Fuzzy Logic, Trends in Logic (2013), Springer Netherlands) · Zbl 0937.03030
[28] Belohlavek, R., Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128, 1, 277-298 (2004) · Zbl 1060.03040
[29] Konecny, J.; Krupka, M., Complete relations on fuzzy complete lattices, Fuzzy Sets and Systems, 320, 64-80 (2017) · Zbl 1426.06004
[30] Cabrera, I.; Cordero, P.; Garcia-Pardo, F.; Ojeda-Aciego, M.; De Baets, B., Galois connections between a fuzzy preordered structure and a general fuzzy structure., IEEE Trans. Fuzzy Syst., 26, 3, 1274-1287 (2018)
[31] Yao, W., Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems, 161, 7, 973-987 (2010) · Zbl 1193.06007
[32] Day, A., The lattice theory of functional dependencies and normal decompositions, Int. J. Algebra Comp., 2, 409-431 (1992) · Zbl 0798.68049
[33] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Attribute and size reduction mechanisms in multi-adjoint concept lattices, J. Comput. Appl. Math., 318, 388-402 (2017) · Zbl 1382.68236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.