zbMATH — the first resource for mathematics

The effect of the nonuniformity of the Earth’s magnetic field on electrodynamic space tether system dynamics. (English. Russian original) Zbl 1460.37079
Vestn. St. Petersbg. Univ., Math. 53, No. 3, 366-375 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 3, 539-551 (2020).
Summary: An electrodynamic space tether system operating in stretched cluster mode in a circular equatorial near-Earth orbit under conditions of nonuniformity of the Earth’s magnetic field is considered in this work. The dynamic equations of motion are analyzed to find equilibrium modes of motion. A possible motion mode of tethered cluster is found, which is close to vertical equilibrium position in the orbital plane. The stability of the found equilibrium is investigated in linear approximation. The results of numerical modeling of some relations for the tether system with varying its parameters are presented.
37N05 Dynamical systems in classical and celestial mechanics
70K20 Stability for nonlinear problems in mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
70K45 Normal forms for nonlinear problems in mechanics
Full Text: DOI
[1] V. V. Beletsky and E. M. Levin, Dynamics of Space Tether Systems (Nauka, Moscow, 1990; American Astronautical Society, San Diego, CA, 1993).
[2] Rodnikov, A. V.; Krasilnikov, P. S., On spacial motions of an orbital tethered system, Nelineinaya Din., 13, 505-518 (2017) · Zbl 1382.37093
[3] Forward, R. L., Electrodynamic Drag Terminator Tether, Appendix K of High Strength-to-Weight Tapered Hoytether for LEO to GEO Payload Transport, Final Report on NASA SBIR Phase I Contract NAS8-40690 (1996)
[4] R. L. Forward, R. P. Hoyt, and C. Uphoff, “Application of the Terminator TetherTM electrodynamic drag technology to the deorbit of constellation spacecraft,” in Proc. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Cleveland, OH, USA, July 13-15,1998 (American Institute of Aeronautics and Astronautics, New York, 1998), paper No. 98-3491. 10.2514/6.1998-3491.
[5] Forward, R. L.; Hoyt, R. P., Terminator TetherTM: A spacecraft deorbit device, J. Spacecr. Rockets, 37, 187-196 (2000)
[6] Cosmo, M. L.; Lorenzini, E. C., Tethers in Space Handbook (1997), Cambridge, MA: Smithsonian Astrophysical Observatory, Cambridge, MA
[7] Vannaroni, G.; Dobrowolny, M.; De Venuto, F., Deorbiting with electrodynamic tethers: Comparison between different tether configurations, Space Debris, 1, 159-172 (1999)
[8] Iess, L.; Bruno, C.; Ulivieri, C.; Ponzi, U.; Parisse, M.; Laneve, G.; Vannaroni, G.; Dobrowolny, M.; De Venuto, F.; Bertotti, B.; Anselmo, L., Satellite de-orbiting by means of electrodynamic tethers. Part I: General concepts and requirements, Acta Astronaut., 50, 399-406 (2002)
[9] Iess, L.; Bruno, C.; Ulivieri, C.; Vannaroni, G., Satellite de-orbiting by means of electrodynamic tethers. Part II: System configuration and performance, Acta Astronaut., 50, 407-416 (2002)
[10] Ishige, Y.; Kawamoto, S.; Kibe, S., Study on electrodynamic tether system for space debris removal, Acta Astronaut., 55, 917-929 (2004)
[11] Yamaigiwa, Y.; Hiragi, E.; Kishimoto, T., Dynamic behavior of electrodynamic tether deorbit system on elliptical orbit and its control by Lorentz force, Aerospace Sci. Technol., 9, 366-373 (2005) · Zbl 1195.70043
[12] Zhong, R.; Zhu, Z. H., Libration dynamics and stability of electrodynamic tethers in satellite deorbit, Celestial Mech. Dyn. Astron., 116, 279-298 (2013)
[13] E. M. Levin, Dynamic Analysis of Space Tether Missions (American Astronautical Society, San Diego, CA, 2007), in Ser.: Advances in the Astronautical Sciences, Vol. 126.
[14] Pelaez, J.; Lorenzini, E. C.; Lopez-Rebollal, O.; Ruiz, M., A new kind of dynamic instability in electrodynamic tethers, Adv. Astronaut. Sci., 105, 1367-1386 (2000)
[15] A. A. Tikhonov, “On a constructive scheme of an electrodynamic tether to expand capabilities and improve the efficiency of solving the problem of deorbiting an artificial Earth satellite,” in Modern Methods of Applied Mathematics, Control Theory and Computer Technologies (PMTUKT-2017) (Proc. 10th Int. Conf., Voronezh, Russia, Sept. 18-24,2017) (Nauchn. Kn., Voronezh, 2017), pp. 347-350.
[16] A. A. Tikhonov, “Device of stabilization of electrodynamic cable system for removing space waste,” RF Patent No. RU-2666610-C1, B64G-001/32; B64G-001/34; Web of Science Derwent Collection No. 2018-81465E (2018).
[17] A. A. Tikhonov and L. F. Shcherbakova, “On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame,” in Proc. 8th Polyakhov’s Reading (Int. Sci. Conf. on Mechanics, Saint Petersburg, Russia, Jan. 29 - Feb. 2,2018) (American Institute of Physics, Melville, NY, 2018), in Ser.: AIP Conference Proceedings, Vol. 1959, paper No. 020001. 10.1063/1.5034626.
[18] Tikhonov, A. A.; Petrov, K. G., Multipole models of the Earth’s magnetic field, Cosmic Res., 40, 203-212 (2002)
[19] Aleksandrov, A. Yu.; Tikhonov, A. A., Uniaxial attitude stabilization of a rigid body under conditions of nonstationary perturbations with zero mean values, Vestn. St. Petersburg Univ.: Math., 52, 187-193 (2019) · Zbl 1455.70006
[20] K. A. Antipov and A. A. Tikhonov, “Multipole models of the geomagnetic field: Construction of the Nth approximation,” Geomagn. Aeron. (Engl. Transl.) 53, 257-267 (2013). 10.1134/S0016793213020023
[21] V. V. Beletsky, Motion of an Artificial Satellite about Its Center of Mass (Nauka, Moscow, 1965; Israel Program for Scientific Translation, Jerusalem, 1966).
[22] K. G. Petrov and A. A. Tikhonov, “The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 1. The strength of the Earth’s magnetic field in the orbital coordinate system,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 92-100 (1999). · Zbl 1019.78005
[23] Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V., Geomagnetic field models for satellite angular motion studies, Acta Astronaut., 144, 171-180 (2018)
[24] Tikhonov, A. A., Refinement of the oblique dipole model in the evolution of rotary motion of a charged body in the geomagnetic field, Cosmic Res., 40, 157-162 (2002)
[25] K. G. Petrov and A. A. Tikhonov, “The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 2. The determination of the moment and estimations of its components,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 15, 81-91 (1999). · Zbl 1019.78006
[26] Corsi, J.; Iess, L., Stability and control of electrodynamic tether for de-orbiting applications, Acta Astronaut., 48, 491-501 (2001)
[27] Akritas, A., Elements of Computer Algebra with Applications (1989), New York: Wiley-Interscience, New York · Zbl 0675.68001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.