×

Two-dimensional systems that arise from the Noether classification of Lagrangians on the line. (English) Zbl 1237.70039

The paper under review is devoted to a Noether classification for systems of two second-order ODEs of variational type that arise from the submaximal and maximal Noether symmetry classification of Lagrangians on the line. A main tool is the notion of Noether-like operators which provides an algebraic study of such systems derived from complex Euler-Lagrange equations and also yield new first integrals. The main results are: 1) a classification of systems with respect to the Noether-like operators they admit; 2) a Noether counting theorem as an analogue of Lie counting theorem.

MSC:

70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
70H03 Lagrange’s equations

Software:

SYMMGRP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Mahomed, F. M., Symmetry group classification of ODEs: survey of some results, J. Math. Methods Appl. Sci., 30, 1995-2012 (2007) · Zbl 1135.34029
[2] Mahomed, F. M.; Leach, P. G.L., Lie algebras associated with scalar second-order ordinary differential equations, J. Math. Phys., 30, 2770-2777 (1989) · Zbl 0724.34003
[3] González-Gascón, F.; Gonzalez-Lopéz, A., Symmetries of differential equations, J. Math. Phys., 24, 2006 (1983) · Zbl 0564.35081
[4] Noether, E., Invariant variationsprobleme, Nachrichten der akadmie der Wissenschaften in Gottingen, Mathematisch-Physikalische Klasse, 2, 235-237 (1918), (English translation in Transport Theory and Statistical Physics 1 (3) (1971) 186-207)
[5] Douglas, J., Solution of inverse problem of the calculus of variations, Trans. Am. Math. Soc., 50, 71-128 (1941) · JFM 67.1038.01
[6] Anderson, I. M.; Thompson, G., The inverse problem of the calculus of variations for ordinary differential equations, Mem. Am. Math. Soc., 473, 1-110 (1992)
[7] Kara, A. H.; Mahomed, F. M., Relationship between symmetries and conservation laws, Int. J. Theor. Phys., 45, 367-383 (2000) · Zbl 0962.35009
[8] Ibragimov, N. H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008
[9] Kara, A. H.; Mahomed, F. M., Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynam., 45, 367-383 (2006) · Zbl 1121.70014
[10] Gouveia, P. D.F.; Torres, D. F.M., Computing ODE symmetries as abnormal variational symmetries, Nonlinear Anal., 71, 12, e138-e146 (2009) · Zbl 1238.49003
[11] Cresson, J.; Frederico, G. S.F.; Torres, D. F.M., Constants of motion for non-differentiable quantum variational problems, Topol. Methods Nonlinear Anal., 33, 2, 217-231 (2009) · Zbl 1188.49023
[12] Martins, N.; Torres, D. F.M., Noether’s symmetry theorem for nabla problems of the calculus of variations, Appl. Math. Lett., 23, 12, 1432-1438 (2010) · Zbl 1205.49033
[13] Torres, D. F.M., Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal., 3, 3, 491-500 (2004) · Zbl 1058.49019
[14] Gorringe, V. M.; Leach, P. G.L., Lie point symmetries for systems of 2nd order linear ordinary differential equations, Quest. Math., 11, 95 (1988) · Zbl 0649.34018
[15] Wafo Soh, C.; Mahomed, F. M., Symmetry breaking for a system of two second-order ordinary differential equations, Nonlinear Dynam., 22, 121-133 (2000) · Zbl 0961.34023
[16] Sen, T., Lie symmetries and integrability, Phys. Lett. A, 122, 6-7 (1987)
[17] Kamran, N.; Olver, P. J., Equivalence problems for first order Lagrangians on the line, J. Diff. Equat., 80, 32-78 (1989) · Zbl 0677.49034
[18] Kara, A. H.; Mahomed, F. M.; Leach, P. G.L., Lie and Noether counting theorems for one-dimensional systems, J. Math. Anal. Appl., 178, 116-129 (1993) · Zbl 0783.34002
[19] Kara, A. H.; Mahomed, F. M.; Leach, P. G.L., Noether equivalence problem for particle Lagrangians, J. Math. Anal. Appl., 188, 867-884 (1994) · Zbl 0814.70010
[20] Prince, G. E.; Eliezer, C. J., Symmetries of the time-dependent N-dimensional oscillator, J. Phys. A, Math. Gen., 13, 815 (1980) · Zbl 0432.70036
[21] Ali, S.; Mahomed, F. M.; Qadir, A., Complex Lie symmetries for scalar second-order ordinary differential equations, Nonlinear Anal.: Real World Appl., 10, 3335-3344 (2009) · Zbl 1187.34044
[22] Ali, S.; Mahomed, F. M.; Qadir, A., Complex Lie symmetries for variational problems, J. Nonlinear Math. Phys., 15, 25-35 (2008) · Zbl 1362.70024
[23] S. Ali, F.M. Mahomed, A. Qadir, Linearizability criteria for systems of two second-order ordinary differential equations by complex methods, Nonlinear Dynam. doi:10.1007/s11071-010-9912-2.; S. Ali, F.M. Mahomed, A. Qadir, Linearizability criteria for systems of two second-order ordinary differential equations by complex methods, Nonlinear Dynam. doi:10.1007/s11071-010-9912-2. · Zbl 1284.35018
[24] Bender, C. M.; Boettcher, S., Real spectra in non-hermititian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80, 5243 (1998) · Zbl 0947.81018
[25] Gouveia, P. D.F.; Torres, D. F.M.; Rocha, E. A.M., Symbolic computation of variational symmetries in optimal control, Control Cybernet., 35, 4, 831-849 (2006) · Zbl 1133.49029
[26] Hereman, W., Review of symbolic software for the computation of Lie symmetries of differential equations, Euromath Bull., 1, 2, 45-82 (1994) · Zbl 0891.65081
[27] Wulfman, C. E.; Wybourne, B. G., The Lie group of Newton’s and Lagrangian’s equation for the harmonic oscillator, J. Phys. A, 9, 507-518 (1976) · Zbl 0321.34034
[28] Farooq, M. U.; Ali, S.; Qadir, Asghar, Invariants of two-dimensional systems via complex Lagrangians with applications, Commun. Nonlinear Sci. Numer. Simul., 16, 1804-1810 (2011) · Zbl 1221.34086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.