×

Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. I: Experiments and crystal plasticity background. II: Crack tip stress/deformation analysis. (English) Zbl 1162.74447

Summary: Cracks that exhibit relative amounts of ductility along a copper/sapphire bicrystal interface are simulated within the context of continuum mechanics. The specimen in question exhibits a directional dependence of fracture; that is a crack oriented in one direction along the copper/sapphire interface propagates much more during a given load increment than does the crack oriented to propagate in the opposite direction along the interface. This phenomenon had previously been explained on the basis of an energetic competition between dislocation nucleation and cleavage failure at the two crack tips using both the J. R. Rice and R. Thomson [Ductile versus brittle behaviour of crystals, Philos. Mag. 29, 73–97 (1974)] model as well as the more recent type of dislocation nucleation analysis by J. R. Rice [Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids 40, 239–271 (1992)] based on a Peierls-like stress vs. displacement relationship on the slip plane. However, recent experiments by the author [Directional dependence of fracture in copper/sapphire bicrystal, Acta Mater. 48, 3509–3524 (2000)] have shown that the orientation of the directional dependence of fracture in the copper/sapphire bicrystal is opposite to that predicted on the basis of dislocation nucleation arguments. The goal of the present work is to attempt to explain the directional dependence of fracture solely on the basis of continuum mechanics. In Part I of this pair of papers we review the main results of the experiments and then set the stage for a series of finite element analyses of the bicrystal specimen by reviewing the fundamentals of single crystal plasticity and the general features of crack tip fields in single crystals. We then discuss two different constitutive hardening models for single crystals and predict that, depending on the hardening model, regions of single-slip around the crack tip may degenerate into regions of triple slip. This leads to a discussion of how the near-tip displacement field can change dramatically with constitutive models. Next the constitutive properties used in the simulations are fit to experimental data. Finally we describe the finite element meshes and procedures for simulating the stationary and quasistatically growing cracks. The simulation results are reported in Part II.

MSC:

74R20 Anelastic fracture and damage
74E15 Crystalline structure
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ABAQUS/Standard User’s Manual, 1998. Version 5.7, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI, USA.; ABAQUS/Standard User’s Manual, 1998. Version 5.7, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI, USA.
[2] Armstrong, R., Cleavage crack propagation within crystals by the Griffith mechanism versus a dislocation mechanism, Mater. Sci. Engng., 1, 251-256 (1966)
[3] Asaro, R. J., Crystal Plasticity, J. Appl. Mech., 50, 921-934 (1983) · Zbl 0557.73033
[4] Asaro, R. J.; Rice, J. R., Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25, 309-338 (1977) · Zbl 0375.73097
[5] Barenblatt, G. I., Mathematical theory of equilibrium cracks, Adv. Appl. Mech., 7, 56-129 (1962)
[6] Bassani, J. L.; Wu, T.-Y., Latent hardening in single crystals II. Analytical characterization and predictions, Philos. Trans. Roy. Soc. London A, 435, 21-41 (1991) · Zbl 0731.73021
[7] Becker, R.C., 1988. Interface constitutive relations for use with the finite element code ABAQUS. Memorandum KZ-002, Alcoa, Pittsburgh, Pennsylvania 15212, USA.; Becker, R.C., 1988. Interface constitutive relations for use with the finite element code ABAQUS. Memorandum KZ-002, Alcoa, Pittsburgh, Pennsylvania 15212, USA.
[8] Beltz, G.E., 1998. Personal communication.; Beltz, G.E., 1998. Personal communication.
[9] Beltz, G. E.; Rice, J. R., Dislocation nucleation at metal-ceramic interfaces, Acta Metall. Mater., 40, Suppl., S321-S331 (1992)
[10] Beltz, G. E.; Wang, J.-S., Crack direction effects along copper/sapphire interfaces, Acta Metall. Mater., 40, 1675-1683 (1992)
[11] Chiao, Y.-H.; Clarke, D. R., Direct observation of dislocation emission from crack tips in silicon at high temperatures, Acta Metall., 37, 203-219 (1989)
[12] Conrad, H., Mechanical behavior of sapphire, J. Am. Ceram. Soc., 48, 195-201 (1965)
[13] Crone, W., 1998. Personal communication.; Crone, W., 1998. Personal communication.
[14] Cuitiño, A. M.; Ortiz, M., Computational modelling of single crystals, Modelling Simul. Mater. Sci. Engng., 1, 225-263 (1992)
[15] Cuitiño, A. M.; Ortiz, M., Three-dimensional crack tip fields in four-point-bending copper single-crystal specimens, J. Mech. Phys. Solids, 44, 863-904 (1996)
[16] Drugan, W. J.; Rice, J. R., Restrictions on quasi-statically moving surfaces on strong discontinuity in elastic-plastic solids, (Dvorak, G. J.; Shield, R. T., Mechanics of Material Behavior (1984), Elsevier Science Publishers: Elsevier Science Publishers Amsterdam), 59-73
[17] Drugan, W. J.; Rice, J. R.; Sham, T.-L., Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids, J. Mech. Phys. Solids, 30, 447-473 (1982) · Zbl 0496.73086
[18] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960)
[19] Edwards, E. H.; Washburn, W., Strain hardening of latent slip systems in zinc crystals, J. Metals, 200, 1239-1242 (1954)
[20] Element selection in ABAQUS/Standard, 1997. Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI, USA.; Element selection in ABAQUS/Standard, 1997. Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI, USA.
[21] Franciosi, P.; Berveiller, M.; Zaoui, A., Latent hardening in copper and aluminum single crystals, Acta Metall., 28, 273-283 (1980)
[22] Franciosi, P.; Zaoui, A., Multislip in F.C.C. crystals: a theoretical approach compared with experimental data, Acta Metall., 30, 1627-1637 (1982)
[23] Freund, L. B.; Hutchinson, J. W.; Lam, P. S., Analysis of high-strain-rate elastic-plastic crack growth, Eng. Fract. Mech., 23, 119-129 (1986)
[24] Green, G.; Knott, J. F., On effects of thickness on ductile crack growth in mild steel, J. Mech. Phys. Solids, 23, 167-183 (1975)
[25] Gumbsch, P.; Riedle, J.; Hartmaier, A.; Fischmeister, H. F., Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, 282, 1293-1295 (1998)
[26] Hill, R., Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 95-102 (1966)
[27] Hill, R.; Rice, J. R., Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972) · Zbl 0254.73031
[28] Hirsch, P. B.; Roberts, S. G., Modelling plastic zones and the brittle-ductile transition, Philos. Trans. Roy. Soc. London. A, 355, 1991-2002 (1997) · Zbl 0953.74596
[29] Huang, Y., 1991. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Mech Report 178, Division of Applied Sciences, Harvard University, Cambridge, MA.; Huang, Y., 1991. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Mech Report 178, Division of Applied Sciences, Harvard University, Cambridge, MA.
[30] Hutchinson, J. W., Singular behavior at the end of a tensile crack tip in a hardening material, J. Mech. Phys. Solids, 16, 13-31 (1968) · Zbl 0166.20704
[31] Hutchinson, J. W., Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. Roy. Soc. London A, 348, 101-127 (1976) · Zbl 0319.73059
[32] Kanchi, M. B.; Zienkiewicz, O. C.; Owen, D. R.J., The visco-plastic approach to problems of plasticity and creep involving geometric non-linear effects, Int. J. Numer. Methods Engng., 12, 169-181 (1978) · Zbl 0366.73032
[33] Kanninen, M. F.; Popelar, C. H., Advanced Fracture Mechanics. (1985), Oxford University Press: Oxford University Press Oxford · Zbl 0587.73140
[34] Kelly, A.; Tyson, W.; Cottrell, A., Ductile and brittle crystals, Philos. Mag., 15, 567-586 (1967)
[35] Khantha, M.; Pope, D. P.; Vitek, V., Cooperative generation of dislocation loops and the brittle-to-ductile transition, Mater. Sci. Engng. A, 234, 629-632 (1997)
[36] Kocks, U. F., Latent hardening in aluminum, Acta Metall., 14, 87-98 (1966)
[37] Kocks, U. F., The relation between polycrystal deformation and single-crystal deformation, Metall. Trans., 1, 1121-1143 (1970)
[38] Kysar, J.W., 1997. Addendum to “A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech Report 178”. Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.; Kysar, J.W., 1997. Addendum to “A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech Report 178”. Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.
[39] Kysar, J.W., 1999. Addendum to “Interface constitutive relations for use with the finite element code ABAQUS”. Unpublished.; Kysar, J.W., 1999. Addendum to “Interface constitutive relations for use with the finite element code ABAQUS”. Unpublished.
[40] Kysar, J. W., Directional dependence of fracture in copper/sapphire bicrystal, Acta Mater., 48, 3509-3524 (2000)
[41] Kysar, J.W., 2001. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface: Part II, Crack tip stress and deformation analysis. J. Mech. Phys. Solids 49 (5), 1129-1153.; Kysar, J.W., 2001. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface: Part II, Crack tip stress and deformation analysis. J. Mech. Phys. Solids 49 (5), 1129-1153. · Zbl 1162.74447
[42] Lawn, B. R.; Hockey, B. J.; Wiederhorn, S. M., Atomically sharp cracks in brittle solids: an electron microscopy study, J. Mater. Sci., 15, 1207-1223 (1980)
[43] Lubliner, J., Plasticity Theory. (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[44] Mason, D. D., Segregation-induced embrittlement of grain boundaries, Philos. Mag., 39, 455-468 (1979)
[45] Mesarovic, S. D.; Kysar, J. W., Continuum aspects of directionally dependent cracking of an interface between copper and alumina crystals, Mech. Mater., 23, 271-286 (1996)
[46] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engng., 4, 153-177 (1974) · Zbl 0284.73048
[47] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531 (1987) · Zbl 0626.73010
[48] Needleman, A.; Tvergaard, V., Mesh effects in the analysis of dynamic ductile crack growth, Engng. Fract. Mech., 47, 75-91 (1994)
[49] Orowan, E., Zur Kristallplastizität III, Z. Phys., 89, 634-659 (1934)
[50] Pan, J.; Rice, J. R., Rate sensitivity of plastic flow and implications for yield-surface vertices, Int. J. Solids Struct., 19, 973-987 (1983) · Zbl 0543.73033
[51] Peirce, D.; Asaro, R. J.; Needleman, A., An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall., 30, 1087-1119 (1982)
[52] Peirce, D.; Asaro, R. J.; Needleman, A., Material rate dependence and localized deformation in crystalline solids, Acta Metall., 31, 1951-1976 (1983)
[53] Peirce, D.; Shih, C. F.; Needleman, A., A tangent modulus method for rate dependent solids, Comput. & Struct., 18, 875-887 (1984) · Zbl 0531.73057
[54] Peralta, P.; Laird, C., Fatigue fracture at bicrystal interfaces: experiment and theory, Acta Mater., 46, 2001-2020 (1998)
[55] Polanyi, M., Über eine Art gitterstörung, die einen Kristall plastisch machen konnte, Z. Phys., 89, 660-664 (1934)
[56] Rice, J. R., Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[57] Rice, J. R., Plane strain slip line theory for anisotropic rigid-plastic materials, J. Mech. Phys. Solids, 21, 63-74 (1973) · Zbl 0251.73028
[58] Rice, J. R., Tensile crack tip fields in elastic-ideally plastic crystals, Mech. Mater., 6, 317-335 (1987)
[59] Rice, J. R., Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids, 40, 239-271 (1992)
[60] Rice, J. R.; Hawk, D. E.; Asaro, R. J., Crack tip fields in ductile crystals, Int. J. Fract., 42, 301-321 (1990)
[61] Rice, J. R.; Nikolic, R., Anti-plane shear cracks in ideally plastic crystals, J. Mech. Phys. Solids, 33, 595-622 (1985) · Zbl 0591.73134
[62] Rice, J. R.; Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16, 1-12 (1968) · Zbl 0166.20703
[63] Rice, J. R.; Suo, Z.; Wang, J.-S., Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems., (Ruhle, M.; Evans, A. G.; Ashby, M. F.; Hirth, J. P., Acta-Scripta Metallurgica Proceedings Series. (1990), Pergamon Press: Pergamon Press Oxford), 269-294
[64] Rice, J. R.; Thomson, R., Ductile versus brittle behaviour of crystals, Philos. Mag., 29, 73-97 (1974)
[65] Saeedvafa, M., Orientation dependence of fracture in copper bicrystals with symmetric tilt boundaries, Mech. Mater., 13, 295-311 (1992)
[66] Saeedvafa, M.; Rice, J. R., Crack tip singular field in ductile crystals with Taylor power-law hardening II: Plane strain, J. Mech. Phys. Solids, 37, 673-691 (1989) · Zbl 0713.73068
[67] Schmid, E., Beiträge zur Physik und Metallographie de Magnesiums, Z. Electrochem., 37, 447-459 (1931)
[68] Taylor, G. I., The mechanism of plastic deformation of crystals. Part I.—Theoretical, Proc. Roy Soc. London A, 145, 362-387 (1934) · JFM 60.0712.02
[69] Taylor, G. I., Plastic strain in metals, J. Inst. Metals, 62, 307-324 (1938)
[70] Taylor, G. I.; Elam, C. F., The distortion of an aluminum crystal during a tensile test, Proc. Roy Soc. London A, 102, 643-667 (1923)
[71] Wang, J.-S., 1998. Personal communication.; Wang, J.-S., 1998. Personal communication.
[72] Wang, J.-S.; Anderson, P. M., Fracture behavior of embrittled F.C.C. metal bicrystals, Acta Metall. Mater., 39, 779-792 (1991)
[73] Wu, T.-Y.; Bassani, J. L.; Laird, C., Latent hardening in single crystals I. Theory and experiment, Proc. Roy. Soc. London A, 435, 1-19 (1991) · Zbl 0731.73020
[74] Xu, X.-P.; Needleman, A., Void nucleation by inclusion debonding in crystal matrix, Modelling Simul. Mater. Sci. Engng., 1, 111-132 (1993)
[75] Zarka, J., (Argon, A. S., Constitutive Equations in Plasticity. (1975), MIT Press: MIT Press Cambridge, MA), 359-386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.