×

Strong form-based meshfree collocation method for wind-driven ocean circulation. (English) Zbl 1441.86006

Summary: A meshfree point collocation method for modeling large scale wind-driven ocean circulation is proposed. A distinct feature of the method is its ability to represent derivative operators via moving least-square approximation of the Taylor expansion through point-wise computations at collocation points. The method directly discretizes strong forms using the precomputed derivative operators at each collocation point. Numerical studies with three benchmark problems are performed to demonstrate the accuracy and robustness of the method. Along with these studies, an examination is presented regarding the effect of numerical parameters on the error behavior of the proposed method. Finally, wind-driven ocean circulation in the Mediterranean Sea is examined to test the method’s ability to model realistic oceanic flow with arbitrary shaped coastal lines.

MSC:

86A05 Hydrology, hydrography, oceanography
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics

Software:

Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dijkstra, H. A., Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño (2005), Springer-Verlag
[2] Vallis, G. K., Atmosphere and Ocean Fluid Dynamics: Fundamentals and Large-scale Circulation (2006), Cambridge University Press
[3] Pedlosky, J., Geophysical Fluid Dynamics (1992), Springer-Verlag
[4] San, O.; Staples, A. E.; Wang, Z.; Iliescu, T., Approximate deconvolution large eddy simulation of a barotropic ocean circulation model, Ocean Model., 40, 120-132 (2011)
[5] Ringler, T. D.; Thuburn, J.; Klemp, J. B.; Skamarock, W. C., A unified approach to energy conservation and potential vorticity dynamics for arbitrary-structured c-grids, J. Comput. Phys., 229, 3065-3090 (2010) · Zbl 1307.76054
[6] Chen, Q.; Ringler, T. D.; Gunzburger, M., A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids, J. Comput. Phys., 240, 174-197 (2013) · Zbl 1426.76346
[7] Myers, P. G.; Weaver, A. J., A diagnostic barotropic finite-element ocean circulation model, J. Atmos. Ocean. Technol., 12, 511-526 (1995)
[8] Cascón, J. M.; Garcia, G. C.; Rodriguez, R., A priori and a posteriori error analysis for a large-scale ocean circulation finite element model, Comput. Methods Appl. Mech. Engrg., 192, 5305-5327 (2003) · Zbl 1054.86002
[9] Fix, G. J., Finite element models for ocean circulation problems, SIAM J. Appl. Math., 29, 3, 371-387 (1975) · Zbl 0329.76092
[10] Foster, E. L.; Iliescu, T.; Wang, Z., A finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 261, 105-117 (2013) · Zbl 1286.86009
[11] Kim, T.-Y.; Park, E.-J.; Shin, D., A \(C^0\)-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 300, 225-244 (2016) · Zbl 1425.74473
[12] Kim, D.; Kim, T.-Y.; Park, E.-J.; Shin, D., Error estimates of B-splined based finite-element methods for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 335, 225-272 (2018) · Zbl 1440.86001
[13] Rotundo, N.; Kim, T.-Y.; Heltai, W. L.; Fried, E., Error analysis of a B-spline based finite-element method for modeling wind-driven ocean circulation, J. Sci. Comput., 69, 1, 430-459 (2016) · Zbl 1398.76124
[14] Kim, T.-Y.; Iliescu, T.; Fried, E., B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 286, 168-191 (2015) · Zbl 1423.76246
[15] Al Balushi, I.; Jiang, W.; Tsogtgerel, G.; Kim, T.-Y., Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation, Comput. Methods Appl. Mech. Engrg., 332, 1-24 (2018) · Zbl 1439.76044
[16] Jiang abd T.-Y. Kim, W., Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries, Comput. Methods Appl. Mech. Engrg., 299, 144-160 (2016) · Zbl 1425.74469
[17] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, S. Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[18] Höllig, K., Finite Element Methods with B-Splines (2003), SIAM: SIAM Philadelphia · Zbl 1020.65085
[19] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids, 36, 1, 12-26 (2007) · Zbl 1115.76040
[20] Li, S.; Liu, W. K., Synchronized reproducing kernel interpolant via multiple wavelet expansion, Comput. Mech., 21, 28-47 (1998) · Zbl 0912.76057
[21] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity, Part I-formulation and theory, Internat. J. Numer. Methods Engrg., 45, 251-288 (1999) · Zbl 0945.74079
[22] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1-34 (2002)
[23] Kim, D. W.; Kim, Y., Point collocation method using the fast moving least-square reproducing kernel approximation, Internat. J. Numer. Methods Engrg., 56, 10, 1445-1464 (2003) · Zbl 1054.76066
[24] Hillman, M.; Chen, J. S., An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics, Internat. J. Numer. Methods Engrg., 107, 603-630 (2016) · Zbl 1352.74119
[25] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Internat. J. Numer. Methods Engrg., 61, 2316-2343 (2004) · Zbl 1075.74703
[26] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035-1063 (2004) · Zbl 1060.74672
[27] Anitescu, C.; Jia, Y.; Zhang, Y. Z.; Rabczuk, T., An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073-1097 (2015) · Zbl 1425.65193
[28] Lee, S. H.; Yoon, Y. C., Meshfree point collocation method for elasticity and crack problems, Internat. J. Numer. Methods Engrg., 61, 1, 22-48 (2004) · Zbl 1079.74667
[29] Kim, D. W.; Liu, W. K.; Yoon, Y. C.; Belytschko, T.; Lee, S. H., Meshfree point collocation method with intrinsic enrichment for interface problems, Comput. Mech., 40, 1037-1052 (2007) · Zbl 1161.74053
[30] Kim, D. W.; Yoon, Y. C.; Liu, W. K.; Belytschko, T., Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative, J. Comput. Phys., 221, 370-394 (2007) · Zbl 1110.65110
[31] Yoon, Y. C.; Song, J. H., Extended particle difference method for weak and strong discontinuity problems: part I. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities, Comput. Mech., 53, 6, 1087-1103 (2014) · Zbl 1398.74482
[32] Yoon, Y. C.; Song, J. H., Extended particle difference method for weak and strong discontinuity problems: part II. formulations and applications for various interfacial singularity problems, Comput. Mech., 53, 6, 1105-1128 (2014)
[33] Yoon, Y. C.; Song, J. H., Extended particle difference method for moving boundary problems, Comput. Mech., 54, 3, 723-743 (2014) · Zbl 1311.74132
[34] Song, J. H.; Fu, Y.; Kim, T. Y.; Yoon, Y. C.; Michopoulos, J. G.; Rabczuk, T., Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method, Int. J. Mech. Mater. Design, 14, 491-509 (2018)
[35] Fu, Y.; Michopoulos, J. G.; Song, J. H., Bridging the multi phase-field and molecular dynamics models for the solidification of nano-crystals, J. Comput. Sci., 20, 187-197 (2017)
[36] Yoon, Y. C.; Schaefferkoetter, P.; Rabczuk, T.; Song, J. H., New strong formulation for material nonlinear problems based on the particle difference method, Eng. Anal. Bound. Elem., 98, 310-327 (2019) · Zbl 1404.74197
[37] Hu, H. Y.; Chen, J. S.; Chi, S. W., Perturbation and stability analysis of strong form collocation with reproducing kernel approximation, Internat. J. Numer. Methods Engrg., 88, 157-179 (2011) · Zbl 1242.65249
[38] Friedman, J. H.; Bentley, J.; Finkel, R. A., An algorithm for finding best matches in logarithmic time, ACM Trans. Math. Softw., 3, 3, 209-226 (1977) · Zbl 0364.68037
[39] Kim, D. W.; Kim, H. K., Point collocation method based on the FMLSRK approximation for electromagnetic field analysis, IEEE Trans. Magn., 40, 2, 1029-1032 (2004)
[40] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[41] Chen, J. S.; Hu, W.; Hu, H. Y., Reproducing kernel enhanced local radial basis collocation method, Internat. J. Numer. Methods Engrg., 75, 600-627 (2007) · Zbl 1195.74278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.