×

An efficient adaptive mesh refinement (AMR) algorithm for the discontinuous Galerkin method: applications for the computation of compressible two-phase flows. (English) Zbl 1392.76029

Summary: We present an adaptive mesh refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76K05 Hypersonic flows
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kleinstreuer, C., Modern fluid dynamics, (2010), Springer Netherlands · Zbl 1193.76035
[2] Chu, C. C.; Graham, I. G.; Hou, T. Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput. (MCOM), 79, 272, 1915-1955, (2010) · Zbl 1202.65154
[3] Millward, R. R., A new adaptive multiscale finite element method with applications to high contrast interface problems, (2011), University of Bath Bath, UK, Ph.D. thesis
[4] Gibou, F.; Fedkiw, R.; Osher, S., A review of level-set methods and some recent applications, J. Comput. Phys., 353, Supplement C, 82-109, (2018) · Zbl 1380.65196
[5] Carpenter, M.; Casper, J. H., Accuracy of shock capturing in two spatial dimensions, AIAA J., 37, 9, 1072-1079, (1999)
[6] Djaffar, A. Y.; Wagdi, G.; Habashi, W. G., Finite element adaptive method for hypersonic thermochemical nonequilibrium flows, AIAA J., 35, 5, 1294-1302, (1997) · Zbl 0910.76031
[7] A. Papoutsakis, K. Panourgias, J. Ekaterinaris, Discontinuous Galerkin discretization of chemically reacting flows, AIAA Paper, Aerospace Sciences Meeting, AIAA SciTech Forum (2014-0068), https://doi.org/10.2514/6.2014-0068; A. Papoutsakis, K. Panourgias, J. Ekaterinaris, Discontinuous Galerkin discretization of chemically reacting flows, AIAA Paper, Aerospace Sciences Meeting, AIAA SciTech Forum (2014-0068), https://doi.org/10.2514/6.2014-0068
[8] Zhao, X.; Meganathan, A.; Zhang, S., Computational approach for aeroheating with thermally coupled fields, J. Thermophys. Heat Transf., 31, 3, 489-499, (2017)
[9] Panourgias, K. T.; Papoutsakis, A.; Ekaterinaris, J. A., High-resolution p-adaptive DG simulations of flows with moving shocks, Int. J. Numer. Methods Fluids, 75, 3, 205-230, (2014) · Zbl 1455.65178
[10] Papoutsakis, A.; Sazhin, S. S.; Begg, S.; Danaila, I.; Luddens, F., A new approach to modelling the two way coupling for momentum transfer in a hollow-cone spray, (Payri, R.; Margot, X., Proceedings of the 28th European Conference on Liquid Atomization and Spray Systems ILASS-Europe, (2017), Universitat Politecnica de Valencia Valencia, Spain), 448-455
[11] Guittet, A.; Theillard, M.; Gibou, F., A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees, J. Comput. Phys., 292, C, 215-238, (2015) · Zbl 1349.76336
[12] Mirzadeh, M.; Guittet, A.; Burstedde, C.; Gibou, F., Parallel level-set methods on adaptive tree-based grids, J. Comput. Phys., 322, Supplement C, 345-364, (2016) · Zbl 1352.65253
[13] Karniadakis, G.; Sherwin, S., Spectral/hp element methods for CFD, (2003), Oxford University Press
[14] Kubatko, E.; Bunya, S.; Dawson, C.; Westerink, J., Dynamic p-adaptive Runge-Kutta discontinuous Galerkin methods for the shallow water equations, Comput. Methods Appl. Mech. Eng., 198, 1766-1774, (2009) · Zbl 1227.76032
[15] Tonini, S.; Gavaises, M.; Theodorakakos, A., Modelling of high-pressure dense diesel sprays with adaptive local grid refinement, Int. J. Heat Fluid Flow, 29, 2, 427-448, (2008)
[16] Isola, D.; Guardone, A.; Quaranta, G., Finite-volume solution of two-dimensional compressible flows over dynamic adaptive grids, J. Comput. Phys., 285, 1-23, (2015) · Zbl 1351.76110
[17] Kopera, M. A.; Giraldo, F. X., Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations, J. Comput. Phys., 275, 92-117, (2014) · Zbl 1349.76226
[18] Nastase, C.; Mavriplis, D., High-order discontinuous Galerkin methods using an hp-multigrid approach, J. Comput. Phys., 213, 1, 330-357, (2006) · Zbl 1089.65100
[19] Fortin, A.; Briffard, T.; Garon, A., A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures, J. Comput. Phys., 285, 100-110, (2015) · Zbl 1352.65323
[20] Woopen, M.; May, G.; Schutz, J., Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 76, 811-834, (2014)
[21] Frey, P.; Alauzet, F., Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Eng., 194, 48, 5068-5082, (2005) · Zbl 1092.76054
[22] Flaherty, J.; Krivodonova, L.; Remachle, J. F.; Shepard, M. S., Aspects of discontinuous Galerkin methods for hyperbolic conservation laws, Finite Elem. Anal. Des., 38, 10, 889-908, (2002) · Zbl 0996.65106
[23] Yelash, L.; Müller, A.; Lukáčová-Medvid’ová; Giraldo, F. M.; Wirth, V., Adaptive discontinuous evolution Galerkin method for dry atmospheric flow, J. Comput. Phys., 268, 1, 106-133, (2014) · Zbl 1349.76292
[24] Tian, L.; Xu, Y.; Kuerten, J.; van der Vegt, J., An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations, J. Comput. Phys., 319, C, 242-265, (2016) · Zbl 1349.76276
[25] Mavriplis, D., Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes, J. Comput. Phys., 145, 1, 141-165, (1998) · Zbl 0926.76066
[26] Bassi, F.; Botti, L.; Colombo, A.; Pietro, D. D.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231, 1, 45-65, (2012) · Zbl 1457.65178
[27] Botti, L.; Colombo, A.; Bassi, F., H-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems, J. Comput. Phys., 347, Supplement C, 382-415, (2017) · Zbl 1380.65251
[28] Kouhi, M.; Oñate, E.; Mavriplis, D., Adjoint-based adaptive finite element method for the compressible Euler equations using finite calculus, Aerosp. Sci. Technol., 46, 422-435, (2015)
[29] Klaij, C. M.; van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 2, 589-611, (2006) · Zbl 1099.76035
[30] Burstedde, C.; Holke, J., Coarse mesh partitioning for tree-based AMR, SIAM J. Sci. Comput., 39, 5, C364-C392, (2017) · Zbl 1377.65126
[31] Burstedde, C.; Wilcox, L.; Ghattas, O., : scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133, (2011) · Zbl 1230.65106
[32] Isaac, T.; Burstedde, C.; Wilcox, L.; Ghattas, O., Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput., 37, 5, C497-C531, (2015) · Zbl 1323.65105
[33] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 8.5, J. Numer. Math., 25, 3, 137-146, (2017) · Zbl 1375.65148
[34] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24/1-24/27, (2007) · Zbl 1365.65248
[35] Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., : a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 3-4, 237-254, (2006)
[36] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., The development of discontinuous Galerkin methods, (Discontinuous Galerkin Methods, Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, (2000)), 3-50 · Zbl 0989.76045
[37] Ekaterinaris, J., High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci., 41, 3-4, 192-300, (2005)
[38] Wang, Z. J., High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Prog. Aerosp. Sci., 43, 1-3, 1-41, (2007)
[39] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 2, 199-224, (1998) · Zbl 0920.65059
[40] Liu, Y.; Vinokur, M.; Wang, Z., Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems, J. Comput. Phys., 212, 2, 454-472, (2006) · Zbl 1085.65099
[41] Liu, Y.; Vinokur, M.; Wang, Z., Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys., 216, 2, 780-801, (2006) · Zbl 1097.65089
[42] Yu, M.; Wang, Z.; Liu, Y., On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods, J. Comput. Phys., 259, 15, 70-95, (2014) · Zbl 1349.65591
[43] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 2, 567-1596, (2007) · Zbl 1126.76035
[44] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[45] van der Vegta, J. J.W.; Rhebergen, S., Hp-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. part II: optimization of the Runge-Kutta smoother, J. Comput. Phys., 231, 7564-7583, (2012) · Zbl 1284.65130
[46] Schnepp, S. M.; Weiland, T., Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method, J. Comput. Appl. Math., 236, 4909-4924, (2012) · Zbl 1458.78023
[47] Schnepp, S. M., Error-driven dynamical hp-meshes with the discontinuous Galerkin method for three-dimensional wave propagation problems, J. Comput. Appl. Math., 270, 353-368, (2014) · Zbl 1330.78019
[48] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512, (1984) · Zbl 0536.65071
[49] Berger, M.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 1, 64-84, (1989) · Zbl 0665.76070
[50] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 2, 508-532, (2002) · Zbl 1057.76033
[51] Hartmann, R.; Houston, P., An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations, J. Comput. Phys., 227, 22, 9670-9685, (2008) · Zbl 1359.76220
[52] Rinaldi, E.; Colonna, P.; Pecnik, R., Flux-conserving treatment of non-conformal interfaces for finite-volume discretization of conservation laws, Comput. Fluids, 120, 126-139, (2015) · Zbl 1390.76506
[53] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement - a new high resolution code called RAMSES, Astron. Astrophys., 385, 1, 337-364, (2002)
[54] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., P-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 207, 92-113, (2005) · Zbl 1177.76194
[55] Mani, K.; Mavriplis, D., Error estimation and adaptation for functional outputs in time-dependent flow problems, J. Comput. Phys., 229, 2, 415-440, (2010) · Zbl 1355.76046
[56] Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 1, 67-83, (1994) · Zbl 0811.65089
[57] Fidkowski, K., Output-based space-time mesh optimization for unsteady flows using continuous-in-time adjoints, J. Comput. Phys., 341, Supplement C, 258-277, (2017) · Zbl 1376.76021
[58] Fidkowski, K.; Luo, Y., Output-based space-time mesh adaptation for the compressible Navier-Stokes equations, J. Comput. Phys., 230, 14, 5753-5773, (2011) · Zbl 1416.76211
[59] Mavriplis, D., Unstructured mesh generation and adaptivity, (1995), Tech. rep., Universities Space Association. ICASE Report No: 95-26
[60] K. Kontzialis, J.A. Ekaterinaris, Discontinuous Galerkin discretizations for mixed type meshes with p-type adaptivity, AIAA Paper 297.; K. Kontzialis, J.A. Ekaterinaris, Discontinuous Galerkin discretizations for mixed type meshes with p-type adaptivity, AIAA Paper 297. · Zbl 1365.76120
[61] K. Panourgias, K. Kontzialis, J.A. Ekaterinaris, A limiting approach for the three-dimensional dg discretisations in arbitrary type meshes, AIAA Paper 2011-3837, 20th CFD conference.; K. Panourgias, K. Kontzialis, J.A. Ekaterinaris, A limiting approach for the three-dimensional dg discretisations in arbitrary type meshes, AIAA Paper 2011-3837, 20th CFD conference.
[62] I. Toulopoulos, J.A. Ekaterinaris, Discontinuous-Galerkin discretizations for viscous flow problems in complex domains, AIAA Paper 2005-1264 1264.; I. Toulopoulos, J.A. Ekaterinaris, Discontinuous-Galerkin discretizations for viscous flow problems in complex domains, AIAA Paper 2005-1264 1264.
[63] Toulopoulos, I.; Ekaterinaris, J. A., High-order discontinuous-Galerkin discretizations for computational aeroacoustics in complex domains, AIAA J., 44, 3, (2006)
[64] Park, C., Nonequilibrium hypersonic aerothermodynamics, (1989), John Wiley & Sons NY
[65] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, Rech. Aérosp., 1, 5-21, (1994)
[66] Spalart, P.; Deck, S.; Shur, M.; Squires, K.; Strelets, M.; Travin, A., A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput. Fluid Dyn., 20, 3, 181-195, (2006) · Zbl 1112.76370
[67] Shur, M.; Spalart, P.; Strelets, M.; Travin, A., A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Flow, 29, 6, 1638-1649, (2008)
[68] Dong, Q.; Ishima, T.; Kawashima, H.; Long, W., A study on the spray characteristics of a piezo pintle-type injector for di gasoline engines, J. Mech. Sci. Technol., 27, 7, 1981-1993, (2013)
[69] Anderson, J., Computational fluid dynamics, computational fluid dynamics: the basics with applications, (1995), McGraw-Hill Education · Zbl 0922.76003
[70] Allmaras, S. R.; Johnson, F. T.; Spalart, P. R., Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model, (7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, USA, (2012)), Paper ICCFD7-1902
[71] Cockburn, B.; Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435, (1989) · Zbl 0662.65083
[72] Liu, Y.; Vinokur, M., Nonequilibrium flow computations. I. an analysis of numerical formulations of conservation laws, J. Comput. Phys., 83, 373-397, (1989) · Zbl 0672.76080
[73] Karypis, G.; Kumar, V., Metis: unstructured graph partitioning and sparse matrix ordering system, version 4.0, (2009)
[74] Kopriva, D., A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys., 128, 2, 475-488, (1996) · Zbl 0866.76064
[75] Roache, P. J., Verification and validation in computational science and engineering, (1998), Hermosa Publishers · Zbl 0914.68133
[76] Oberkampf, W. L.; Roy, C. J., Verification and validation in scientific computing, (2010), Cambridge University Press · Zbl 1211.68499
[77] Wang, Z.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845, (2013) · Zbl 1455.76007
[78] Williamson, C. H.K., The existence of two stages in the transition to three-dimensionality of a cylinder wake, Phys. Fluids, 31, 3165-3168, (1988)
[79] Nompelis, I.; Candler, G. V.; MacLean, M.; Wadhams, T. P.; Holden, M. S., Numerical investigation of double-cone flow experiments with high-enthalpy effects, (2010), AIAA Paper
[80] Nompelis, I., Computational study of hypersonic double cone experiments for code validation, (2004), University of Minesota Minesota, US, Ph.D. thesis
[81] Sazhin, S. S., Droplets and sprays, (2014), Springer London
[82] Vujanović, M.; Petranović, Z.; Edelbauer, W.; Duić, N., Modelling spray and combustion processes in diesel engine by using the coupled eulerian-eulerian and eulerian-Lagrangian method, Energy Convers. Manag., 125, 15-25, (2016), sustainable development of energy, water and environment systems for future energy technologies and concepts
[83] Lee, J.; Joshi, B. N.; Lee, J.; Kim, T.; Kim, D.; Al-Deyab, S.; Seong, I.; Swihart, M.; Yoon, W.; Yoon, S., Stable high-capacity lithium ion battery anodes produced by supersonic spray deposition of hematite nanoparticles and self-healing reduced graphene oxide, Electrochim. Acta, 228, 604-610, (2017)
[84] Kiselev, S.; Kiselev, V.; Klinkov, S.; Kosarev, V.; Zaikovskii, V., Study of the gas-particle radial supersonic jet in the cold spraying, Surf. Coat. Technol., 313, 24-30, (2017)
[85] Sazhina, E. M.; Sazhin, S. S.; Heikal, M.; Babushok, V. I.; Johns, R. J.R., A detailed modelling of the spray ignition process in diesel engines, Combust. Sci. Technol., 160, 1, 317-344, (2000)
[86] Rybdylova, O.; Osiptsov, A.; Sazhin, S. S.; Begg, S.; Heikal, M., A combined viscous-vortex, thermal-blob and Lagrangian method for non-isothermal, two-phase flow modelling, Int. J. Heat Fluid Flow, 58, 93-102, (2016)
[87] Rybdylova, O.; Qubeissi, M. A.; Braun, M.; Crua, C.; Manin, J.; Pickett, L.; de Sercey, G.; Sazhina, E.; Sazhin, S. S.; Heikal, M., A model for droplet heating and its implementation into ANSYS fluent, Int. Commun. Heat Mass Transf., 76, 265-270, (2016)
[88] Zaripov, T. S.; Gilfanov, A. K.; Begg, S. M.; Rybdylova, O.; Sazhin, S. S.; Heikal, M. R., The fully Lagrangian approach to the analysis of particle/droplet dynamics: implementation into ANSYS fluent and application to gasoline sprays, At. Sprays, 27, 6, 493-510, (2017)
[89] Turner, M.; Sazhin, S. S.; Healey, J.; Martynov, S., A breakup model for transient diesel fuel sprays, Fuel, 97, 288-305, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.