×

Temperature in and out of equilibrium: a review of concepts, tools and attempts. (English) Zbl 1377.80002

Summary: We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperature’s “fluctuations”). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalized fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.

MSC:

80A05 Foundations of thermodynamics and heat transfer
82B35 Irreversible thermodynamics, including Onsager-Machlup theory
60F10 Large deviations
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Müller, I., A History of Thermodynamics (2007), Springer-Verlag · Zbl 1131.80002
[2] Chang, H., Inventing Temperature (2004), Oxford University Press
[3] Loyson, P., Galilean thermometer not so galilean, J. Chem. Educ., 89, 1095 (2012)
[4] Miller, A., The concept of temperature, Amer. J. Phys., 20, 488 (1952)
[5] Pippard, A., Elements of Classical Thermodynamics (1995), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0093.22103
[6] Brush, S., The Kinetic Theory of Gases, an Anthology of Classic Papers with Historical Commentary (2003), Imperial College Press
[7] Mehra, J., The Golden Age of Theoretical Physics (2001), World Scientific: World Scientific Singapore
[8] Mishin, Y., Thermodynamic theory of equilibrium fluctuations, Ann. Physics, 363, 48 (2015) · Zbl 1360.80004
[9] Einstein, A., Zur allgemeinen molekularen Theorie der Wärme, Ann. Phys., 14, 354 (1904) · JFM 35.0918.01
[10] Einstein, A., On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat, Ann. Phys., 17, 549 (1905)
[11] Perrin, J., Les Atomes (1913), Alcan: Alcan Paris · JFM 44.0913.12
[12] Kubo, R., The fluctuation-dissipation theorem, Rep. Progr. Phys., 29, 255 (1966) · Zbl 0163.23102
[13] Kubo, R., Brownian motion and nonequilibrium statistical mechanics, Science, 32, 2022 (1986)
[14] Marconi, U. M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A., Fluctuation-dissipation: Response theory in statistical physics, Phys. Rep., 461, 111 (2008)
[15] Pekola, J. P.; Muratore-Ginanneschi, P.; Kupiainen, A.; Galperin, Y. M., Energy fluctuations of a finite free-electron Fermi gas, Phys. Rev. E, 94, 022123 (2016)
[16] Truesdell, C., Six Lectures on Modern Natural Philosophy (1966), Springer- Verlag · Zbl 0138.20604
[17] Braun, S.; Ronzheimer, J. P.; Schreiber, M.; Hodgman, S. S.; Rom, T.; Bloch, I.; Schneider, U., Negative absolute temperature for motional degrees of freedom, Science, 339, 6115, 52-55 (2013)
[18] Dunkel, J.; Hilbert, S., Consistent thermostatistics forbids negative absolute temperatures, Nat. Phys., 10, 1, 67-72 (2014)
[19] Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S., Physics of Long-Range Interacting Systems (2014), Oxford University Press · Zbl 1303.82003
[20] Ellis, R., The theory of large deviations: from Boltzmann’s 1877 calculation to equilibrium macrostates in 2d turbulence, Physica D, 133, 106 (1999) · Zbl 1194.82003
[21] Touchette, H., The large deviation approach to statistical mechanics, Phys. Rep., 478, 1 (2009)
[22] (Vulpiani, A.; Cecconi, F.; Cencini, M.; Puglisi, A.; Vergni, D., Large Deviations in Physics (2014), Springer-Verlag) · Zbl 1320.82005
[23] Varadhan, S., Large Deviations and Applications (1984), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0549.60023
[24] Lebowitz, J., Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy, Physica A, 194, 1 (1993)
[25] Lebowitz, J., Boltzmann’s entropy and time’s arrow, Phys. Today, 46, 32 (1993)
[26] Cerino, L.; Cecconi, F.; Cencini, M.; Vulpiani, A., The role of the number of degrees of freedom and chaos in macroscopic irreversibility, Physica A, 442, 486 (2016)
[27] Falcioni, M.; Palatella, L.; Pigolotti, S.; Rondoni, L.; Vulpiani, A., Initial growth of Boltzmann entropy and chaos in a large assembly of weakly interacting systems, Physica A, 385, 170 (2007)
[28] Cercignani, C., The Boltzmann Equation and Its Applications (1988), Springer-Verlag · Zbl 0646.76001
[29] Cercignani, C., Ludwig Boltzmann: The Man Who Trusted Atoms (1998), Oxford University Press · Zbl 0917.01028
[30] Falcioni, M.; Palatella, L.; Vulpiani, A., Production rate of the coarse-grained Gibbs entropy and the Kolmogorov-Sinai entropy: a real connection?, Phys. Rev. E, 71, 016118 (2005)
[31] Castiglione, P.; Falcioni, M.; Lesne, A.; Vulpiani, A., Chaos and Coarse Graining in Statistical Mechanics (2008), Cambridge University Press · Zbl 1189.82001
[32] Chibbaro, S.; Rondoni, L.; Vulpiani, A., Reductionism, Emergence and Levels of Reality (2014), Springer-Verlag
[33] Gallavotti, G., Statistical Mechanics. A Short Treatise (1995), Springer-Verlag
[34] Campisi, M.; Kobe, D., Derivation of the Boltzmann principle, Amer. J. Phys., 78, 608 (2010)
[35] Rugh, H., Dynamical approach to temperature, Phys. Rev. Lett., 78, 772 (1997)
[36] Rugh, H., A geometric dynamical approach to thermodynamics, J. Phys. A: Math. Gen., 31, 7761 (1998) · Zbl 0945.80002
[37] Giardinà, C.; Livi, R., Ergodic properties of microcanonical observables, J. Stat. Phys., 91, 1027 (1998) · Zbl 0946.82021
[38] Jepps, O.; Ayton, G.; Evans, D., Microscopic expressions for the thermodynamic temperature, Phys. Rev. E, 62, 4757 (2000)
[39] Rickzayen, G.; Powles, J., Temperature in the classical microcanonical ensemble, J. Chem. Phys., 114, 4333 (2001)
[40] Morriss, G.; Rondoni, L., Definition of temperature in equilibrium and non-equilibrium systems, Phys. Rev. E, 59, R5 (1999)
[41] Landau, L. D.; Lifchitz, E. M., Physique Statistique, Éditions MIR (1967)
[42] Uffink, J.; van Lith, J., Thermodynamic uncertainty relations, Found. Phys., 29, 655 (1999)
[43] Stodolsky, L., Temperature fluctuations in multiparticle production, Phys. Rev. Lett., 75, 1044 (1995)
[44] Feshbach, H., Small systems: When does thermodynamics apply?, IEEE J. Quantum Electron., 24, 1320 (1988)
[45] McFee, R., On fluctuations of temperature in small systems, Amer. J. Phys., 41, 230 (1973)
[46] Chui, T. C.P.; Swanson, D. R.; Adriaans, M. J.; Nissen, J. A.; Lipa, J. A., Temperature fluctuations in the canonical ensemble, Phys. Rev. Lett., 69, 3005 (1992)
[47] Kratky, K. W., Fluctuation of thermodynamic parameters in different ensembles, Phys. Rev. A, 31, 945 (1985)
[48] Kittel, C., Temperature fluctuation: An oxymoron, Phys. Today, 41, 93 (1988)
[49] Mandelbrot, B. B., Temperature fluctuations: A well-defined and unavoidable notion, Phys. Today, 42, 71 (1989)
[50] Falcioni, M.; Villamaina, D.; Vulpiani, A.; Puglisi, A.; Sarracino, A., Estimate of temperature and its uncertainty in small systems, Amer. J. Phys., 79, 777 (2011)
[51] Hickman, J.; Mishin, Y., Temperature fluctuations in canonical systems: Insights from molecular dynamics simulations, Phys. Rev. B, 94, 184311 (2016)
[52] Kittel, C., On the nonexistence of temperature fluctuations in small systems, Amer. J. Phys., 41, 1211 (1973)
[53] Cramér, H., Mathematical Methods of Statistics (1999), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0985.62001
[54] Kay, S. M., (Fundamentals of Statistical Signal Processing. Fundamentals of Statistical Signal Processing, Estimation Theory, vol. I (1993), Prentice Hall: Prentice Hall Upper Saddle River, NJ) · Zbl 0803.62002
[55] Sharma, D., Asymptotic equivalence of two estimators for an exponential family, Ann. Statist., 1, 973 (1973) · Zbl 0269.62025
[56] Portnoy, S., Asymptotic efficiency of minimum variance unbiased estimators, Ann. Statist., 5, 522 (1977) · Zbl 0356.62030
[57] Gnedenko, B. V.; Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables (1968), Addison-Wesley: Addison-Wesley Cambridge, MA
[58] Haw, M., Middle World: The Restless Heart of Matter and Life (2006), Springer
[59] Ritort, F., Nonequilibrium fluctuations in small systems: From physics to biology, Adv. Chem. Phys., 137, 31 (2007)
[60] Carberry, D. M.; Reid, J. C.; Wang, G. M.; Sevick, E. M.; Searles, D. J.; Evans, D. J., Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap, Phys. Rev. Lett., 92, 140601 (2004)
[61] Puglisi, A., Transport and Fluctuations in Granular Fluids (2015), Springer-Verlag
[62] Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter, Rev. Modern Phys., 85, 1143 (2013)
[63] Talkner, P.; Lutz, E.; Hänggi, P., Fluctuation theorems: Work is not an observable, Phys. Rev. E, 75, 5, 050102 (2007)
[64] Hilbert, S.; Hänggi, P.; Dunkel, J., Thermodynamic laws in isolated systems, Phys. Rev. E, 90, 062116 (2014)
[65] von Helmholtz, H., Principien der statik monocyclischer systeme, J. Reine Angew. Math., 1884, 111 (1884) · JFM 16.0854.02
[66] Gardiner, C., HandBook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1990), Springer- Verlag: Springer- Verlag Berlin · Zbl 0713.60076
[67] Norris, J. R., Markov Chains (1998), Cambridge University Press · Zbl 0938.60058
[68] Seifert, U., Stochastic thermodynamics fluctuation theorems and molecular machines, Rep. Progr. Phys., 75, 126001 (2012)
[69] Khinchin, A., Mathematical Foundations of Statistical Mechanics (1949), Dover: Dover New York · Zbl 0037.41102
[70] van den Broeck, C., Stochastic thermodynamics, (Selforganization By Nonlinear Irreversible Processes. Proceedings of the Third International Conference, Kuhlungsborn, GDR, March 18-22, 1985 (1985), Springer), 57-61
[71] Gallavotti, G.; Cohen, E. G.D., Dynamical ensembles in stationary states, J. Stat. Phys., 80, 931 (1995) · Zbl 1081.82580
[72] Sekimoto, K., Langevin equation and thermodynamics, Progr. Theoret. Phys., 130, 17 (1998)
[73] Lebowitz, J. L.; Spohn, H., A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys., 95, 333 (1999) · Zbl 0934.60090
[74] Sekimoto, K., Stochastic Energetics (2010), Springer Verlag · Zbl 1201.82001
[75] Esposito, M.; den Broeck, C. V., Three detailed fluctuation theorems, Phys. Rev. Lett., 104, 090601 (2010)
[76] Jarzynski, C., Comparison of far-from-equilibrium work relations, C. R. Phys., 8, 5, 495-506 (2007)
[77] Cerino, L.; Puglisi, A., Entropy production for velocity-dependent macroscopic forces: The problem of dissipation without fluctuations, Europhys. Lett., 111, 40012 (2015)
[78] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0665.60084
[79] Seifert, U., Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett., 95, 040602 (2005)
[80] Vilar, J. M.G.; Rubi, J. M., Communication: System-size scaling of Boltzmann and alternate Gibbs entropies, J. Chem. Phys., 140, 20, 1-4 (2014)
[81] U. Schneider, S. Mandt, A. Rapp, S. Braun, H. Weimer, I. Bloch, A. Rosch, Comment on “Consistent thermostatistics forbids negative absolute temperatures”, 2014. arXiv:1407.4127; U. Schneider, S. Mandt, A. Rapp, S. Braun, H. Weimer, I. Bloch, A. Rosch, Comment on “Consistent thermostatistics forbids negative absolute temperatures”, 2014. arXiv:1407.4127
[82] Wang, J.-S.; Swendsen, R. H., Negative temperatures and the definition of entropy, Physica A, 453, 24-34 (2016) · Zbl 1459.82007
[83] Frenkel, D.; Warren, P. B., Gibbs, Boltzmann, and negative temperatures, Amer. J. Phys., 83, 2, 163 (2015)
[84] Campisi, M., Construction of microcanonical entropy on thermodynamic pillars, Phys. Rev. E, 91, 052147 (2015)
[85] Buonsante, P.; Franzosi, R.; Smerzi, A., On the dispute between Boltzmann and Gibbs entropy, Ann. Physics, 375, 414 (2016) · Zbl 1378.82011
[86] Buonsante, P.; Franzosi, R.; Smerzi, A., Phase transitions at high energy vindicate negative microcanonical temperature, Phys. Rev. E, 95, 052135 (2017)
[87] Carr, L. D., Negative temperatures?, Science, 339, 6115, 42-43 (2013)
[88] Onsager, L., Statistical hydrodynamics, Nuovo Cimento Suppl. VI Ser. IX, 279 (1949)
[89] Ramsey, N. F., Thermodynamics and statistical mechanics at negative absolute temperatures, Phys. Rev., 103, 1, 20-28 (1956) · Zbl 0074.43007
[90] Landsberg, P. T., Heat engines and heat pumps at positive and negative absolute temperatures, J. Phys. A: Math. Gen., 10, 1773 (1977)
[91] Landsberg, P. T., Thermodynamics and Statistical Mechanics (2014), Dover
[92] Onsager, L., Statistical hydrodynamics, Nuovo Cimento (Supp.), 6, 279 (1949)
[93] Kraichnan, R.; Montgomery, D., Two-dimensional turbulence, Rep. Progr. Phys., 43, 547 (1980)
[94] Newton, P., The \(N\) Vortex Problem: Analytical Techniques (2001), Springer- Verlag · Zbl 0981.76002
[95] Simula, T.; Davis, M. J.; Helmerson, K., Emergence of order from turbulence in an isolated planar superfluid, Phys. Rev. Lett., 113, 165302 (2014)
[96] Huang, K., Statistical Mechanics (1988), John Wiley & Sons
[97] Kubo, R.; Toda, M.; Hashitsume, N., Statistical Physics II: Nonequilibrium Stastical Mechanics (1991), Springer · Zbl 0757.60109
[98] Callen, H. B., Thermodynamics and an Introduction To Thermostatics (1985), Wiley · Zbl 0989.80500
[99] Cerino, L.; Puglisi, A.; Vulpiani, A., A consistent description of fluctuations requires negative temperatures, J. Stat. Mech., 2015, P12002 (2015) · Zbl 1456.82409
[100] Livi, R.; Pettini, M.; Ruffo, S.; Vulpiani, A., Chaotic behavior in nonlinear hamiltonian system and equilibrium statistical mechanics, J. Stat. Phys., 48, 3-4, 539-559 (1987) · Zbl 1084.37523
[101] Franzosi, R.; Livi, R.; Oppo, G. L.; Politi, A., Discrete breathers in Bose-Einstein condensates, Nonlinearity, 24, R89 (2011) · Zbl 1238.37027
[102] Bannur, V.; Kaw, P.; Parikh, J., Statistical mechanics of quartic oscillators, Phys. Rev. E, 55, 2525 (1997)
[103] Bannur, V., Dynamical temperatures of quartic and Hénon-Heiles oscillators, Phys. Rev. E, 58, 407 (1998)
[104] Berdichevsky, V.; Alberti, M., Statistical mechanics of Hénon-Heiles oscillators, Phys. Rev. A, 44, 858 (1991)
[105] Onsager, L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37, 405-426 (1931) · Zbl 0001.09501
[106] Onsager, L., Reciprocal relations in irreversible processes. II, Phys. Rev., 38, 2265-2279 (1931) · Zbl 0004.18303
[107] Kubo, R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, 12, 570 (1957)
[108] Smoluchowski, M., Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 21, 756 (1906) · JFM 37.0814.03
[109] Langevin, P., Sur la theorie du mouvement brownien, C. R. Acad. Sci. Paris, 146, 530 (1908), translated in Am. J Phys. 65 (1997) 1079 · JFM 39.0847.03
[110] Tolman, R. C., The Principles of Statistical Mechanics (2003), Dover Publications · JFM 64.0886.07
[111] Derrida, B.; Brunet, E., Le mouvement Brownien et le théorème de fluctuation-dissipation, (Einstein Aujourd’Hui, EDP (2005)), 203
[112] Crisanti, A.; Puglisi, A.; Villamaina, D., Non-equilibrium and information: the role of cross-correlations, Phys. Rev. E, 85, 061127 (2012)
[113] Sarracino, A.; Villamaina, D.; Gradenigo, G.; Puglisi, A., Irreversible dynamics of a massive intruder in dense granular fluids, Europhys. Lett., 92, 34001 (2010)
[114] Maggi, C.; Marconi, U. M.B.; Gnan, N.; Di Leonardo, R., Multidimensional stationary probability distribution for interacting active particles, Sci. Rep., 5, 10742 (2015)
[115] Onsager, L.; Machlup, S., Fluctuations and irreversible processes, Phys. Rev., 91, 1505 (1953) · Zbl 0053.15106
[116] Villamaina, D.; Baldassarri, A.; Puglisi, A.; Vulpiani, A., Fluctuation dissipation relation: how does one compare correlation functions and responses?, J. Stat. Mech., P07024 (2009)
[117] Puglisi, A.; Villamaina, D., Irreversible effects of memory, Europhys. Lett., 88, 30004 (2009)
[118] Liphardt, J.; Dumont, S.; Smith, S. B.; Tinoco, I.; Bustamante, C., Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality, Science, 296, 1832 (2002)
[119] Donth, E., The Glass Transition (2001), Springer-Verlag: Springer-Verlag Berlin
[120] Cugliandolo, L. F., The effective temperature, J. Phys. A, 44, 483001 (2011) · Zbl 1238.82012
[121] Baiesi, M.; Maes, C., An update on the nonequilibrium linear response, New J. Phys., 15, 013004 (2013) · Zbl 1451.80002
[122] Agarwal, G. S., Fluctuation-disipation theorems for systems in non-thermal equilibrium and applications, Z. Phys., 252, 25 (1972)
[123] Falcioni, M.; Isola, S.; Vulpiani, A., Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics, Phys. Lett. A, 144, 341 (1990)
[124] Prost, J.; Joanny, J.-F.; Parrondo, J. M.R., Generalized fluctuation-dissipation theorem for steady-state systems, Phys. Rev. Lett., 103, 090601 (2009)
[125] Seifert, U.; Speck, T., Fluctuation-dissipation theorem in nonequilibrium steady states, Europhys. Lett., 89, 10007 (2010)
[126] Verley, G.; Mallick, K.; Lacoste, D., Modified fluctuation-dissipation theorem for non-equilibrium steady states and applications to molecular motors, Europhys. Lett., 93, 10002 (2011)
[127] Novikov, E. A., Functionals and the random-force method in turbulence theory, Sov. Phys.-JETP, 20, 1290 (1965)
[128] Cugliandolo, L. F.; Kurchan, J.; Parisi, G., Off equilibrium dynamics and aging in unfrustrated systems, J. Physique I, 4, 1641 (1994)
[129] Aron, C.; Biroli, G.; Cugliandolo, L. F., Symmetries of generating functionals of Langevin processes with colored multiplicative noise, J. Stat. Mech, P11018 (2010)
[130] Speck, T.; Seifert, U., Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state, Europhys. Lett., 74, 391 (2006)
[131] Baiesi, M.; Maes, C.; Wynants, B., Fluctuations and response of nonequilibrium states, Phys. Rev. Lett., 103, 010602 (2009)
[132] Baiesi, M.; Maes, C.; Wynants, B., Nonequilibrium linear response for markov dynamics, II: Inertial dynamics, J. Stat. Phys., 139, 492 (2010) · Zbl 1188.82044
[133] Lippiello, E.; Corberi, F.; Zannetti, M., Off-equilibrium generalization of the fluctuation dissipation theorem for ising spins and measurement of the linear response function, Phys. Rev. E, 71, 036104 (2005)
[134] Lippiello, E.; Corberi, F.; Sarracino, A.; Zannetti, M., Nonlinear response and fluctuation-dissipation relations, Phys. Rev. E, 78, 041120 (2008)
[135] Bouchaud, J.-P.; Biroli, G., Non linear susceptibility in glassy systems: a probe for cooperative dynamical length scales, Phys. Rev. B, 72, 064204 (2005)
[136] Lippiello, E.; Corberi, F.; Sarracino, A.; Zannetti, M., Nonlinear susceptibilities and the measurement of a cooperative length, Phys. Rev. B, 77, 212201 (2008)
[137] Basu, U.; Krüger, M.; Lazarescu, A.; Maes, C., Frenetic aspects of second order response, Phys. Chem. Chem. Phys., 17, 6653 (2015)
[138] Helden, L.; Basu, U.; Krüger, M.; Bechinger, C., Measurement of second-order response without perturbation, Europhys. Lett., 116, 60003 (2016)
[139] Falasco, G.; Baiesi, M., Nonequilibrium temperature response for stochastic overdamped systems, New J. Phys., 18, 043039 (2016) · Zbl 1457.82192
[140] Kryvohuz, M.; Mukamel, S., Multidimensional measures of response and fluctuations in stochastic dynamical systems, Phys. Rev. A, 86, 043818 (2012)
[141] Dorfman, K. E.; Schlawin, F.; Mukamel, S., Nonlinear optical signals and spectroscopy with quantum light, Rev. Modern Phys., 88, 045008 (2016)
[142] Foini, L.; Gambassi, A.; Konik, R.; Cugliandolo, L. F., Measuring effective temperatures in a generalized Gibbs ensemble, Phys. Rev. E, 95, 052116 (2017)
[143] Crisanti, A.; Ritort, F., Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence, J. Phys. A, 36, R181 (2003) · Zbl 1098.82027
[144] Chatelain, C., A far-from-equilibrium fluctuation-dissipation relation for an Ising-Glauber-like model, J. Phys. A, 10739, 36 (2003) · Zbl 1099.82008
[145] Ricci-Tersenghi, F., Measuring the fluctuation-dissipation ratio in glassy systems with no perturbing field, Phys. Rev. E, 065104(R), 68 (2003)
[146] Corberi, F.; Lippiello, E.; Sarracino, A.; Zannetti, M., Fluctuation-dissipation relations and field-free algorithms for the computation of response functions, Phys. Rev. E, 81, 011124 (2010)
[147] Berthier, L., Efficient measurement of linear susceptibilities in molecular simulations: Application to aging supercooled liquids, Phys. Rev. Lett., 98, 220601 (2007)
[148] Szamel, G., Evaluating linear response in active systems with no perturbing field, Europhys. Lett., 117, 50010 (2017)
[149] Harada, T.; Sasa, S., Equality connecting energy dissipation with a violation of the fluctuation-response relation, Phys. Rev. Lett., 95, 130602 (2005)
[150] Harada, T.; Sasa, S., Energy dissipation and violation of the fluctuation-response relation in nonequilibrium langevin systems, Phys. Rev. E, 73, 026131 (2006)
[151] Deutsch, J. M.; Narayan, O., Energy dissipation and fluctuation response for particles in fluids, Phys. Rev. E, 74, 026112 (2006)
[152] Lippiello, E.; Baiesi, M.; Sarracino, A., Nonequilibrium fluctuation-dissipation theorem and heat production, Phys. Rev. Lett., 112, 140602 (2014)
[153] Wang, S. W.; Kawaguchi, K.; Sasa, S. I.; Tang, L. H., Entropy production of nano systems with timescale separation, Phys. Rev. Lett., 117, 070601 (2016)
[154] Toyabe, S.; Okamoto, T.; Watanabe-Nakayama, T.; Taketani, H.; Kudo, S.; Muneyuki, E., Nonequilibrium energetics of a single F1-ATPase molecule, Phys. Rev. Lett., 104, 198103 (2010)
[155] Gomez-Solano, J. R.; Petrosyan, A.; Ciliberto, S., Fluctuations, linear response and heat flux of an aging system, Europhys. Lett., 98, 10007 (2012)
[156] Bérut, A.; Petrosyan, A.; Gomez-Solano, J. R.; Ciliberto, S., Fluctuations in an aging system: the absence of an effective temperature in the sol-gel transition of a quenched gelatin sample, J. Stat. Mech., P10020 (2015)
[157] Basu, U.; Maes, C., Nonequilibrium response and frenesy, J. Phys.: Conf. Ser., 638, 012001 (2015)
[158] Cugliandolo, L. F.; Kurchan, J.; Peliti, L., Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics, Phys. Rev. E, 55, 3898 (1997)
[159] Casas-Vázquez, J.; Jou, D., Temperature in non-equilibrium states: a review of open problems and current proposals, Rep. Progr. Phys., 66, 1937 (2003)
[160] Leuzzi, L., A stroll among effective temperatures in aging systems: Limits and perspectives, J. Non-Cryst. Solids, 355, 686 (2009)
[161] Zannetti, M., Aging in domain growth, (Puri, S.; Wadhawan, V., Kinetics of Phase Transitions (2009), CRC Press Taylor & Francis Group), 153, Ch. 5
[162] Kob, W.; Barrat, J.-L., Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium, Eur. Phys. J. B, 13, 319 (2000)
[163] Leonardo, R. D.; Angelani, L.; Parisi, G.; Ruocco, G., Off-equilibrium effective temperature in monatomic Lennard-Jones glass, Phys. Rev. Lett., 84, 6054 (2000)
[164] Gnan, N.; Maggi, C.; Schrøder, T. B.; Dyre, J. C., Predicting the effective temperature of a glass, Phys. Rev. Lett., 104, 125902 (2010)
[165] Evans, D. J.; Cohen, E. G.D.; Morriss, G. P., Probability of second law violations in shearing steady flows, Phys. Rev. Lett., 71, 2401 (1993) · Zbl 0966.82507
[166] Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690 (1997)
[167] Kurchan, J., Fluctuation theorem for stochastic dynamics, J. Phys. A, 31, 3719 (1998) · Zbl 0910.60095
[168] Crooks, G. E., Path ensemble averages in systems driven far from equilibrium, Phys. Rev. E, 61, 2361 (2000)
[169] Feitosa, K.; Menon, N., Fluidized granular medium as an instance of the fluctuation theorem, Phys. Rev. Lett., 92, 164301 (2004)
[170] Puglisi, A.; Visco, P.; Barrat, A.; Trizac, E.; van Wijland, F., Fluctuations of internal energy flow in a vibrated granular gas, Phys. Rev. Lett., 95, 110202 (2005)
[171] Gradenigo, G.; Puglisi, A.; Sarracino, A.; Marconi, U. M.B., Nonequilibrium fluctuations in a driven stochastic lorentz gas, Phys. Rev. E, 85, 031112 (2012)
[172] Evans, D. J.; Williams, S. R.; Searles, D. J., A proof of Clausius’ theorem for time reversible deterministic microscopic dynamics, J. Chem. Phys., 134, 204113 (2011)
[173] Sellitto, M., Fluctuation relation and heterogeneous superdiffusion in glassy transport, Phys. Rev. E, 80, 011134 (2009)
[174] Zamponi, F.; Bonetto, F.; Cugliandolo, L. F.; Kurchan, J., A fluctuation theorem for non-equilibrium relazational systems driven by external forces, J. Stat. Mech., P09013 (2005) · Zbl 07077988
[175] Crisanti, A.; Ritort, F., Intermittency of glassy relaxation and the emergence of a non-equilibrium spontaneous measure in the aging regime, Europhys. Lett., 66, 253 (2004)
[176] Crisanti, A.; Picco, M.; Ritort, F., Fluctuation relation for weakly ergodic aging systems, Phys. Rev. Lett., 110, 080601 (2013)
[177] Crisanti, A.; Sarracino, A.; Zannetti, M., Heat fluctuations of Brownian oscillators in nonstationary processes: Fluctuation theorem and condensation transition, Phys. Rev. E, 95, 052138 (2017)
[178] Fielding, S.; Sollich, P., Observable dependence of fluctuation-dissipation relations and effective temperatures, Phys. Rev. Lett., 88, 050603 (2002)
[179] Calabrese, P.; Gambassi, A., On the definition of a unique effective temperature for non-equilibrium critical systems, J. Stat. Mech., P07013 (2004) · Zbl 1071.82536
[180] Martens, K.; Bertin, E.; Droz, M., Dependence of the fluctuation-dissipation temperature on the choice of observable, Phys. Rev. Lett., 103, 260602 (2009)
[181] Baiesi, M.; Maes, C.; Wynants, B., Nonequilibrium linear response for markov dynamics, I: Jump processes and overdamped diffusions, J. Stat. Phys., 137, 1094 (2009) · Zbl 1187.82079
[182] Benzi, R.; Paladin, G.; Parisi, G.; Vulpiani, A., On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A: Math. Gen., 17, 3521 (1984)
[183] Benzi, R.; Paladin, G.; Parisi, G.; Vulpiani, A., Characterisation of intermittency in chaotic systems, J. Phys. A: Math. Gen., 18, 2157 (1985) · Zbl 0578.58027
[184] Paladin, G.; Vulpiani, A., Anomalous scaling laws in multifractal objects, Phys. Rep., 156, 147 (1987)
[185] Bohr, T.; Jensen, M.; Paladin, G.; Vulpiani, A., Dynamical Systems Approach To Turbulence (1998), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0933.76002
[186] Beck, C.; Schlögl, F., Thermodynamics of Chaotic Systems (1997), Cambridge University Press: Cambridge University Press Cambridge, UK
[187] Cencini, M.; Cecconi, F.; Vulpiani, A., Chaos (2010), World Scientific · Zbl 1209.37001
[188] Fujisaka, H., Statistical dynamics generated by fluctuations of local lyapunov exponents, Progr. Theoret. Phys., 70, 1264 (1983) · Zbl 1161.37352
[189] Fujisaka, H.; Inoue, M., Statistical-thermodynamic formalism of self-similarity, Progr. Theor. Phys., 77, 1334 (1987)
[190] Pelissetto, A.; Ricci-Tersenghi, F., Large deviations in Monte Carlo methods, (Vulpiani, A.; Cecconi, F.; Cencini, M.; Puglisi, A.; Vergni, D., Large Deviations in Physics (2014), Springer-Verlag), 161 · Zbl 1320.82058
[191] Rose, R.; Sulem, P., Fully developed turbulence and statistical mechanics, J. Phys. (Paris), 39, 441 (1978)
[192] Biferale, L.; Daumont, I.; Lacorata, G.; Vulpiani, A., Fluctuation-response relation in turbulent systems, Phys. Rev. E, 65, 016302 (2002)
[193] Grad, H., Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals, Comm. Pure Appl. Math., 5, 455 (1952) · Zbl 0048.19801
[194] Frisch, U., Turbulence (1995), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0832.76001
[195] Monin, A.; Yaglom, A., Statistical Fluid Dynamics, Vol. I and II (1975), MIT Press: MIT Press Cambridge MA
[196] Kraichnan, R., Classical fluctuation-relaxation theorem, Phys. Rev., 113, 118 (1959)
[197] Kraichnan, R., Deviations from fluctuation-relaxation relations, Physica A, 279, 30 (2000)
[198] Kiyani, K.; McComb, W., Time-ordered fluctuation-dissipation relation for incompressible isotropic turbulence, Phys. Rev. E, 70, 066303 (2004)
[199] Jaeger, H. M.; Nagel, S. R., Physics of the granular state, Science, 255, 1523 (1992)
[200] Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular Media (2001), Cambridge University Press
[201] de Arcangelis, L.; Godano, C.; Grasso, J. R.; Lippiello, E., Statistical physics approach to earthquake occurrence and forecasting, Phys. Rep., 628, 1 (2016)
[202] Baldassarri, A.; Barrat, A.; D’Anna, G.; Loreto, V.; Mayor, P.; Puglisi, A., What is the temperature of a granular medium?, J. Phys.: Condens. Matter, 17, S2405 (2005)
[203] Jaeger, H. M.; Nagel, S. R.; Behringer, R. P., Granular solids, liquids, and gases, Rev. Modern Phys., 68, 1259 (1996)
[204] Campbell, C. S., Rapid granular flows, Annu. Rev. Fluid Mech., 22, 57-92 (1990)
[205] Brilliantov, N. V.; Pöschel, T., Kinetic Theory of Granular Gases (2004), Oxford University Press · Zbl 1155.76386
[206] Haff, P. K., Grain flow as a fluid-mechanical phenomenon, J. Fluid. Mech., 134, 401 (1983) · Zbl 0537.76005
[207] Brey, J. J.; Ruiz-Montero, M. J.; Cubero, D., Homogeneous cooling state of a low-density granular flow, Phys. Rev. E, 54, 3664 (1996)
[208] van Noije, T. P.C.; Ernst, M. H., Velocity distributions in homogeneous granular fluids: the free and the heated case, Gran. Matter, 1, 57-64 (1998)
[209] van Noije, T. P.C.; Ernst, M. H.; Trizac, E.; Pagonabarraga, I., Randomly driven granular fluids: Large-scale structure, Phys. Rev. E, 59, 4326 (1999)
[210] Puglisi, A.; Loreto, V.; Marconi, U. M.B.; Petri, A.; Vulpiani, A., Clustering and non-gaussian behavior in granular matter, Phys. Rev. Lett., 81, 3848 (1998)
[211] Khain, E.; Meerson, B., Onset of thermal convection in a horizontal layer of granular gas, Phys. Rev. E, 67, 021306 (2003)
[212] Eshuis, P.; van der Weele, K.; van der Meer, D.; Bos, R.; Lohse, D., Phase diagram of vertically shaken granular matter, Phys. Fluids, 19, 123301 (2007) · Zbl 1182.76235
[213] Pontuale, G.; Gnoli, A.; Reyes, F. V.; Puglisi, A., Thermal convection in granular gases with dissipative lateral walls, Phys. Rev. Lett., 117, 098006 (2016)
[214] Olafsen, J. S.; Urbach, J. S., Clustering, order, and collapse in a driven granular monolayer, Phys. Rev. Lett., 81, 4369-4372 (1998)
[215] Gradenigo, G.; Sarracino, A.; Villamaina, D.; Puglisi, A., Non-equilibrium length in granular fluids: from experiment to fluctuating hydrodynamics, Europhys. Lett., 96, 14004 (2011)
[216] Puglisi, A.; Gnoli, A.; Gradenigo, G.; Sarracino, A.; Villamaina, D., Structure factors in granular experiments with homogeneous fluidization, J. Chem. Phys., 014704, 136 (2012)
[217] Ogawa, S.; Umemura, A.; Oshima, N., On the equations of fully fluidized granular materials, J. Appl. Math. Phys., 31, 483 (1980) · Zbl 0449.76005
[218] Kumaran, V., Temperature of a granular material “fluidized” by external vibrations, Phys. Rev. E, 57, 5, 5660-5664 (1998)
[219] Goldhirsch, I., Introduction to granular temperature, Powder Technol., 182, 130 (2008)
[220] Trizac, E.; Pagonabarraga, I.; van Noije, T. P.C.; Ernst, M. H., Randomly driven granular fluids: Collisional statistics and short scale structure, Phys. Rev. E, 65, 011303 (2001)
[221] Brey, J. J.; Dufty, J. W.; Kim, C. S.; Santos, A., Hydrodynamics for granular flow at low density, Phys. Rev. E, 58, 4, 4638 (1998)
[222] Soto, R.; Mareschal, M.; Risso, D., Departure from Fourier’s law for fluidized granular media, Phys. Rev. Lett., 83, 24, 5003-5006 (1999)
[223] Martin, P. A.; Piasecki, J., Thermalization of a particle by dissipative collisions, Europhys. Lett., 46, 613 (1999)
[224] Feitosa, K.; Menon, N., Breakdown of energy equipartition in a 2d binary vibrated granular gas, Phys. Rev. Lett., 88, 198301 (2002)
[225] Barrat, A.; Trizac, E., Lack of energy equipartition in homogeneous heated binary granular mixtures, Gran. Matter, 4, 57 (2002) · Zbl 1049.76616
[226] Marconi, U. M.B.; Puglisi, A., Steady-state properties of a mean-field model of driven inelastic mixtures, Phys. Rev. E, 66, 011301 (2002)
[227] Pagnani, R.; Marconi, U. M.B.; Puglisi, A., Driven low density granular mixtures, Phys. Rev. E, 66, 051304 (2002)
[228] Marconi, U. M.B.; Puglisi, A., Mean-field model of free-cooling inelastic mixtures, Phys. Rev. E, 65, 051305 (2002)
[229] Puglisi, A.; Baldassarri, A.; Loreto, V., Fluctuation-dissipation relations in driven granular gases, Phys. Rev. E, 66, 061305 (2002)
[230] Dufty, J. W.; Brey, J. J., Green-Kubo expressions for a granular gas, J. Stat. Phys., 109, 433 (2002) · Zbl 1015.82032
[231] Barrat, A.; Loreto, V.; Puglisi, A., Temperature probes in binary granular gases, Physica A, 334, 513 (2004)
[232] Garzó, V., On the Einstein relation in a heated granular gas, Physica A, 343, 105 (2004)
[233] Shokef, Y.; Bunin, G.; Levine, D., Fluctuation-dissipation relations in driven dissipative systems, Phys. Rev. E, 73, 046132 (2006)
[234] Puglisi, A.; Baldassarri, A.; Vulpiani, A., Violations of the Einstein relation in granular fluids: the role of correlations, J. Stat. Mech., P08016 (2007)
[235] Brey, J. J.; de Soria, M. I.G.; Maynar, P., Breakdown of the fluctuation-dissipation relations in granular gases, Europhys. Lett., 84, 24002 (2008)
[236] Villamaina, D.; Puglisi, A.; Vulpiani, A., The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion, J. Stat. Mech., L10001 (2008)
[237] Gnoli, A.; Puglisi, A.; Sarracino, A.; Vulpiani, A., Nonequilibrium Brownian motion beyond the effective temperature, Plos One, 9, e93720 (2014)
[238] Chastaing, J.-Y.; Géminard, J.-C.; Naert, A., Two methods to measure granular gas temperature, J. Stat. Mech., 073212 (2017) · Zbl 1457.82239
[239] Puglisi, A.; Visco, P.; Trizac, E.; van Wijland, F., Dynamics of a tracer granular particle as a nonequilibrium Markov process, Phys. Rev. E, 73, 021301 (2006)
[240] Sarracino, A.; Villamaina, D.; Costantini, G.; Puglisi, A., Granular brownian motion, J. Stat. Mech., P04013 (2010)
[241] van Kampen, N. G., A power series expansion of the Master equation, Can. J. Phys., 39, 551 (1961) · Zbl 0108.42902
[242] Costantini, G.; Puglisi, A.; Marconi, U. M.B., A granular Brownian ratchet model, Phys. Rev. E, 75, 061124 (2007)
[243] Cleuren, B.; den Broeck, C. V., Granular brownian motor, Europhys. Lett., 77, 50003 (2007)
[244] Gnoli, A.; Petri, A.; Dalton, F.; Gradenigo, G.; Pontuale, G.; Sarracino, A.; Puglisi, A., Brownian ratchet in a thermal bath driven by coulomb friction, Phys. Rev. Lett., 110, 120601 (2013)
[245] Sarracino, A.; Gnoli, A.; Puglisi, A., Ratchet effect driven by coulomb friction: the asymmetric Rayleigh piston, Phys. Rev. E, 87, 040101(R) (2013)
[246] D’Anna, G.; Mayor, P.; Gremaud, G.; Barrat, A.; Loreto, V.; Nori, F., Observing brownian motion in vibration-fluidized granular matter, Nature, 424, 909 (2003)
[247] Puglisi, A.; Sarracino, A.; Gradenigo, G.; Villamaina, D., Dynamics of a massive intruder in a homogeneously driven granular fluid, Gran. Matter, 14, 235 (2012) · Zbl 1267.82093
[248] Visco, P.; Puglisi, A.; Barrat, A.; Trizac, E.; van Wijland, F., Injected power and entropy flow in a heated granular gas, Europhys. Lett., 72, 55 (2005)
[249] Visco, P.; Puglisi, A.; Barrat, A.; Trizac, E.; van Wijland, F., Fluctuations of power injection in randomly driven granular gases, J. Stat. Phys., 125, 519 (2006) · Zbl 1107.82369
[250] Visco, P.; Puglisi, A.; Barrat, A.; van Wijland, F.; Trizac, E., Energy fluctuations in vibrated and driven granular gases, Eur. Phys. J. B, 51, 377 (2006)
[251] Brey, J. J.; Maynar, P.; de Soria, M. I.G., Fluctuating hydrodynamics for dilute granular gases, Phys. Rev. E, 79, 051305 (2009)
[252] Maynar, E. T.P.; de Soria, M. I.G., Fluctuating hydrodynamics for driven granular gases, Eur. Phys. J. Spec. Top., 179, 123 (2009)
[253] van Noije, T. C.P.; Ernst, M. H.; Brito, R.; Orza, J. A.G., Mesoscopic theory of granular fluids, Phys. Rev. Lett., 79, 411 (1997)
[254] Baldassarri, A.; Marconi, U. M.B.; Puglisi, A., Influence of correlations on the velocity statistics of scalar granular gases, Europhys. Lett., 58, 14 (2002)
[255] Baldassarri, A.; Marconi, U. M.B.; Puglisi, A., Cooling of a lattice granular fluid as an ordering process, Phys. Rev. E, 65, 051301 (2002)
[256] Gradenigo, G.; Sarracino, A.; Villamaina, D.; Puglisi, A., Fluctuating hydrodynamics and correlation lengths in a driven granular fluid, J. Stat. Mech., P08017 (2011)
[257] Prados, A.; Lasanta, A.; Hurtado, P. I., Nonlinear driven diffusive systems with dissipation: fluctuating hydrodynamics, Phys. Rev. E, 86, 031134 (2012)
[258] Garzó, V.; Chamorro, M. G.; Reyes, F. V., Transport properties for driven granular fluids in situations close to homogeneous steady states, Phys. Rev. E, 87, 032201 (2013)
[259] Barnes, H. A.; Hutton, J. F.; Walters, K., An Introduction To Rheology (1989), Elsevier: Elsevier Amsterdam · Zbl 0729.76001
[260] Cavagna, A., Supercooled liquids for pedestrians, Phys. Rep., 476, 51 (2009)
[261] MiDi, G. D.R., On dense granular flows, Eur. Phys. J. E, 14, 341 (2004)
[262] de Cruz, F.; Emam, S.; Prochnow, M.; Rouc, J.-N.; Chevoir, F., Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Phys. Rev. E, 72, 021309 (2005)
[263] Jop, P.; Forterre, Y.; Pouliquen, O., A constitutive law for dense granular flows, Nature, 441, 727 (2006)
[264] Forterre, Y.; Pouliquen, O., Flows of dense granular media, Annu. Rev. Fluid Mech., 40, 1 (2008) · Zbl 1136.76051
[265] Gnoli, A.; Lasanta, A.; Sarracino, A.; Puglisi, A., Unified rheology of vibro-fluidized dry granular media: from slow dense flows to fast gas-like regimes, Sci. Rep., 6, 38604 (2016)
[266] Mehta, A.; Edwards, S. F., Statistical mechanics of powder mixtures, Physica A, 157, 1091 (1989)
[267] Edwards, S. F.; Oakeshott, R. B.S., Theory of powders, Physica A, 157, 1080 (1989)
[268] Edwards, S. F.; Mounfield, C. C., The statistical mechanics of granular systems composed of spheres and elongated grains, Physica A, 210, 290 (1994)
[269] Nowak, E. R.; Knight, J. B.; Ben-Naim, E.; Jaeger, H. M.; Nagel, S. R., Density fluctuations in vibrated granular materials, Phys. Rev. E, 57, 2, 1971-1982 (1998)
[270] Barrat, A.; Colizza, V.; Loreto, V., Fluctuation-dissipation ratio for compacting granular media, Phys. Rev. E, 66, 011310 (2002)
[271] Makse, H.; Brujić, J.; Edwards, S. F., Statistical mechanics of jammed matter, (The Physics of Granular Media (2004), Wiley-VCH), 45-85
[272] Richard, P.; Nicodemi, M.; Delannay, R.; Ribière, P.; Bideau, D., Slow relaxation and compaction of granular systems, Nature Mater., 4, 121 (2005)
[273] Ciamarra, M. P.; Coniglio, A.; Nicodemi, M., Thermodynamics and statistical mechanics of dense granular media, Phys. Rev. Lett., 97, 158001 (2006)
[274] Monasson, R., Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett., 75, 2847 (1995)
[275] Kurchan, J., Rheology, and how to stop aging, (Edwards, S. F.; Liu, A.; Nagel, S. R., Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (1997)), 72-79
[276] Nieuwenhuizen, T., Thermodynamic picture of the glassy state gained from exactly solvable models, Phys. Rev. E, 61, 267 (2000)
[277] Franz, S.; Virasoro, M., Quasi-equilibrium interpretation of ageing dynamics, J. Phys. A, 33, 891 (2000) · Zbl 0962.82082
[278] Crisanti, A.; Ritort, F., Activated processes and inherent structure dynamics of finite-size mean-field models for glasses, Europhys. Lett., 52, 640 (2000)
[279] Biroli, G.; Kurchan, J., Metastable states in glassy systems, Phys. Rev. E, 64, 016101 (2001)
[280] Nicodemi, M., Dynamical response functions in models of vibrated granular media, Phys. Rev. Lett., 82, 3734 (1999)
[281] Berthier, L.; Biroli, G., Theoretical perspective on the glass transition and amorphous materials, Rev. Modern Phys., 83, 587 (2011)
[282] Pica Ciamarra, M.; Coniglio, A., Random very loose packings, Phys. Rev. Lett., 101, 128001 (2008)
[283] Kurchan, J., Emergence of macroscopic temperatures in systems that are not thermodynamical microscopically: towards a thermodynamical description of slow granular rheology, J. Phys. Condens. Matter, 12, 6611 (2000)
[284] Barrat, A.; Loreto, V., Response properties in a model for granular matter, J. Phys. A, 33, 4401 (2000) · Zbl 0980.82033
[285] Asenjo, D.; Paillusson, F.; Frenkel, D., Numerical calculation of granular entropy, Phys. Rev. Lett., 112, 098002 (2014)
[286] Martiniani, S.; Schrenk, K. J.; Stevenson, J. D.; Wales, D. J.; Frenkel, D., Turning intractable counting into sampling: computing the configurational entropy of three-dimensional jammed packings, Phys. Rev. E, 93, 012906 (2016)
[287] Ramaswamy, S., The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., 1, 323 (2010)
[288] Bialek, W.; Cavagna, A.; Giardina, I.; Mora, T.; Silvestri, E.; Viale, M.; Walczak, A. M., Statistical mechanics for natural flocks of birds, Proc. Natl. Acad. Sci. USA, 109, 4786 (2012)
[289] Weber, C. A.; Hanke, T.; Deseigne, J.; Séonard; Dauchot, O.; Frey, E.; Chaté, H., Long-range ordering of vibrated polar disks, Phys. Rev. Lett., 110, 208001 (2013)
[290] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Active brownian particles in complex and crowded environments, Rev. Modern Phys., 88, 045006 (2016)
[291] Koumakis, N.; Gnoli, A.; Maggi, C.; Puglisi, A.; Di Leonardo, R., Mechanism of self-propulsion in 3d-printed active granular particles, New J. Phys., 18, 113046 (2016)
[292] Speck, T., Stochastic thermodynamics for active matter, Europhys. Lett., 114, 30006 (2016)
[293] Fodor, E.; Nardini, C.; Cates, M. E.; Tailleur, J.; Visco, P.; van Wijland, F., How far from equilibrium is active matter?, Phys. Rev. Lett., 117, 038103 (2016)
[294] Marconi, U. M.B.; Puglisi, A.; Maggi, C., Heat, perature and Clausius inequality in a model for active Brownian particles, Sci. Rep., 7, 46496 (2017)
[295] Chaté, H.; Ginelli, F.; Montagne, R., Simple model for active nematics: Quasi-long-range order and giant fluctuations, Phys. Rev. Lett., 96, 180602 (2006)
[296] Narayan, V.; Ramaswamy, S.; Menon, N., Long-lived giant number fluctuations in a swarming granular nematic, Science, 317, 105 (2007)
[297] Cates, M. E.; Tailleur, J., Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., 6, 219 (2015)
[298] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75, 1226 (1995)
[299] Toner, J.; Tu, Y.; Ramaswamy, S., Hydrodynamics and phases of flocks, Ann. Phys., 318, 170 (2005) · Zbl 1126.82347
[300] Bratanov, V.; Jenko, F.; Frey, E., New class of turbulence in active fluids, Proc. Natl. Acad. Sci. USA, 112, 15048 (2015) · Zbl 1355.76023
[301] Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Viale, M., Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. USA, 107, 11865 (2010)
[302] Loi, D.; Mossa, S.; Cugliandolo, L. F., Effective temperature of active matter, Phys. Rev. E, 77, 051111 (2008)
[303] Fily, Y.; Marchetti, M. C., Athermal phase separation of self-propelled particles with no alignment, Phys. Rev. Lett., 108, 235702 (2012)
[304] Bialké, J.; Speck, T.; Löwen, H., Crystallization in a dense suspension of self-propelled particles, Phys. Rev. Lett., 108, 168301 (2012)
[305] Berthier, L.; Kurchan, J., Non-equilibrium glass transitions in driven and active matter, Nat. Phys., 9, 310 (2013)
[306] Martin, P.; Hudspeth, A. J.; Jülicher, F., Comparison of a hair bundle’s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process, Proc. Natl. Acad. Sci., 98, 14380 (2001)
[307] Kikuchia, N.; Ehrlicher, A.; Kochc, D.; Käsc, J. A.; Ramaswamya, S.; Rao, M., Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium, Proc. Natl. Acad. Sci., 106, 19776 (2009)
[308] Ben-Isaac, E.; Park, Y.; Popescu, G.; Brown, F. L.H.; Gov, N. S.; Shokef, Y., Effective temperature of red-blood-cell membrane fluctuations, Phys. Rev. Lett., 106, 238103 (2011)
[309] Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifer, U.; Ritort, F., Single-molecule measurement of the effective temperature in non-equilibrium steady states, Nat. Phys., 11, 971 (2015)
[310] Palacci, J.; Cottin-Bizonne, C.; Ybert, C.; Bocquet, L., Sedimentation and effective temperature of active colloidal suspensions, Phys. Rev. Lett., 105, 088304 (2010)
[311] Wulfert, R.; Oechsle, M.; Speck, T.; Seifert, U., Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction, Phys. Rev. E, 95, 050103 (2017)
[312] Hang, M.; Yan, J.; Granick, S.; Luijten, E., Effective temperature concept evaluated in an active colloid mixture, Proc. Natl. Acad. Sci. USA, 114, 7513 (2017)
[313] Maggi, C.; Marconi, U. M.B.; Gnan, N.; Di Leonardo, R., Multidimensional stationary probability distribution for interacting active particles, Sci. Rep., 5, 10742 (2015)
[314] Marconi, U. M.B.; Gnan, N.; Paoluzzi, M.; Maggi, C.; Di Leonardo, R., Velocity distribution in active particles systems, Sci. Rep., 6, 23297 (2016)
[315] Marconi, U. M.B.; Maggi, C., Towards a statistical mechanical theory of active fluids, Soft Matter, 11, 8768 (2015)
[316] Hänggi, P.; Jung, P., Colored noise in dynamical systems, Adv. Chem. Phys., 89, 239 (1995)
[317] Chaudhuri, D., Active Brownian particles: Entropy production and fluctuation response, Phys. Rev. E, 90, 022131 (2014)
[318] Bertini, L.; Sole, A. D.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C., Macroscopic fluctuation theory for stationary non-equilibrium states, J. Stat. Phys., 107, 635 (2002) · Zbl 1031.82038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.