×

Large field ranges from aligned and misaligned winding. (English) Zbl 1414.83088

Summary: We search for effective axions with super-Planckian decay constants in type IIB string models. We argue that such axions can be realised as long winding trajectories in complex-structure moduli space by an appropriate flux choice. Our main findings are: the simplest models with aligned winding in a 2-axion field space fail due to a general no-go theorem. However, equally simple models with misaligned winding, where the effective axion is not close to any of the fundamental axions, appear to work to the best of our present understanding. These models have large decay constants but no large monotonic regions in the potential, making them unsuitable for large-field inflation. We also show that our no-go theorem can be avoided by aligning three or more axions. We argue that, contrary to misaligned models, such models can have both large decay constants and large monotonic regions in the potential. Our results may be used to argue against the refined Swampland Distance Conjecture and strong forms of the axionic Weak Gravity Conjecture. It becomes apparent, however, that realising inflation is by far harder than just producing a light field with large periodicity.

MSC:

83E30 String and superstring theories in gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[2] H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE]. · Zbl 1117.81117
[3] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
[4] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
[5] L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
[6] F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP09 (2014) 184 [arXiv:1404.3040] [INSPIRE].
[7] R. Blumenhagen and E. Plauschinn, Towards universal axion inflation and reheating in string theory, Phys. Lett.B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE]. · Zbl 1317.83087
[8] A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett.B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE]. · Zbl 1317.83089
[9] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].
[10] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett.B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE]. · Zbl 1345.83049
[11] T. Rudelius, On the possibility of large axion moduli spaces, JCAP04 (2015) 049 [arXiv:1409.5793] [INSPIRE].
[12] T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
[13] A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett.114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].
[14] M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP08 (2015) 032 [arXiv:1503.03886] [INSPIRE]. · Zbl 1387.83088
[15] J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE]. · Zbl 1388.83091
[16] J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP04 (2016) 017 [arXiv:1504.00659] [INSPIRE]. · Zbl 1388.83892
[17] T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP01 (2016) 091 [arXiv:1503.07853] [INSPIRE]. · Zbl 1388.83632
[18] D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, JHEP02 (2016) 128 [arXiv:1504.03566] [INSPIRE]. · Zbl 1388.83122
[19] B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP12 (2015) 108 [arXiv:1506.03447] [INSPIRE]. · Zbl 1388.81939
[20] B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE]. · Zbl 1388.83119
[21] B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE]. · Zbl 1381.83065
[22] L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP04 (2016) 020 [arXiv:1512.00025] [INSPIRE]. · Zbl 1388.83923
[23] K. Kooner, S. Parameswaran and I. Zavala, Warping the weak gravity conjecture, Phys. Lett.B 759 (2016) 402 [arXiv:1509.07049] [INSPIRE]. · Zbl 1367.83092
[24] R. Kappl, H.P. Nilles and M.W. Winkler, Modulated natural inflation, Phys. Lett.B 753 (2016) 653 [arXiv:1511.05560] [INSPIRE]. · Zbl 1367.83107
[25] A. Hebecker, F. Rompineve and A. Westphal, Axion monodromy and the weak gravity conjecture, JHEP04 (2016) 157 [arXiv:1512.03768] [INSPIRE]. · Zbl 1388.83078
[26] A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can gravitational instantons really constrain axion inflation?, JHEP02 (2017) 097 [arXiv:1607.06814] [INSPIRE]. · Zbl 1377.83157
[27] A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the magnetic weak gravity conjecture for axions?, Fortsch. Phys.65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE]. · Zbl 1371.83204
[28] A. Hebecker and P. Soler, The weak gravity conjecture and the axionic black hole paradox, JHEP09 (2017) 036 [arXiv:1702.06130] [INSPIRE]. · Zbl 1382.83058
[29] E. Palti, The weak gravity conjecture and scalar fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE]. · Zbl 1381.83074
[30] D. Lüst and E. Palti, Scalar fields, hierarchical UV/IR mixing and the weak gravity conjecture, JHEP02 (2018) 040 [arXiv:1709.01790] [INSPIRE]. · Zbl 1387.83053
[31] D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE]. · Zbl 1373.83044
[32] F. Baume and E. Palti, Backreacted axion field ranges in string theory, JHEP08 (2016) 043 [arXiv:1602.06517] [INSPIRE]. · Zbl 1390.83324
[33] I. Valenzuela, Backreaction issues in axion monodromy and Minkowski 4-forms, JHEP06 (2017) 098 [arXiv:1611.00394] [INSPIRE]. · Zbl 1380.85022
[34] R. Blumenhagen, I. Valenzuela and F. Wolf, The swampland conjecture and f-term axion monodromy inflation, JHEP07 (2017) 145 [arXiv:1703.05776] [INSPIRE]. · Zbl 1380.85012
[35] M. Cicoli, D. Ciupke, C. Mayrhofer and P. Shukla, A geometrical upper bound on the inflaton range, JHEP05 (2018) 001 [arXiv:1801.05434] [INSPIRE]. · Zbl 1391.83136
[36] T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE]. · Zbl 1396.81151
[37] B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE]. · Zbl 1388.81939
[38] R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The refined swampland distance conjecture in Calabi-Yau moduli spaces, JHEP06 (2018) 052 [arXiv:1803.04989] [INSPIRE]. · Zbl 1395.81251
[39] R. Blumenhagen, Large field inflation/quintessence and the refined swampland distance conjecture, PoS(CORFU2017)175 [arXiv:1804.10504] [INSPIRE].
[40] M. Dias et al., Pole N-flation, JHEP02 (2019) 120 [arXiv:1805.02659] [INSPIRE]. · Zbl 1411.83147
[41] T.W. Grimm, C. Li and E. Palti, Infinite distance networks in field space and charge orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].
[42] A. Hebecker, P. Henkenjohann and L.T. Witkowski, Flat monodromies and a moduli space size conjecture, JHEP12 (2017) 033 [arXiv:1708.06761] [INSPIRE]. · Zbl 1383.83176
[43] A. Landete and G. Shiu, Mass hierarchies and dynamical field range, Phys. Rev.D 98 (2018) 066012 [arXiv:1806.01874] [INSPIRE].
[44] G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
[45] N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].
[46] N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP03 (2011) 023 [arXiv:1101.0026] [INSPIRE].
[47] P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev.D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].
[48] T. Kobayashi, A. Oikawa and H. Otsuka, New potentials for string axion inflation, Phys. Rev.D 93 (2016) 083508 [arXiv:1510.08768] [INSPIRE].
[49] N. Cabo Bizet, O. Loaiza-Brito and I. Zavala, Mirror quintic vacua: hierarchies and inflation, JHEP10 (2016) 082 [arXiv:1605.03974] [INSPIRE]. · Zbl 1390.83326
[50] R. Blumenhagen, D. Herschmann and F. Wolf, String moduli stabilization at the conifold, JHEP08 (2016) 110 [arXiv:1605.06299] [INSPIRE]. · Zbl 1390.83328
[51] R. Blumenhagen, D. Herschmann and F. Wolf, Challenges for moduli stabilization and string cosmology near the conifold, arXiv:1704.04140 [INSPIRE]. · Zbl 1390.83328
[52] A. Hebecker et al., Fluxbrane inflation, Nucl. Phys.B 854 (2012) 509 [arXiv:1104.5016] [INSPIRE]. · Zbl 1229.83080
[53] A. Hebecker et al., Fluxbranes: moduli stabilisation and inflation, JHEP01 (2013) 095 [arXiv:1207.2766] [INSPIRE]. · Zbl 1342.81434
[54] M. Arends et al., D7-brane moduli space in axion monodromy and fluxbrane inflation, Fortsch. Phys.62 (2014) 647 [arXiv:1405.0283] [INSPIRE]. · Zbl 1338.83182
[55] L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic inflation and string theory, JHEP01 (2015) 128 [arXiv:1411.5380] [INSPIRE]. · Zbl 1388.83668
[56] F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP09 (2016) 062 [arXiv:1606.00508] [INSPIRE]. · Zbl 1390.81417
[57] A. Landete, F. Marchesano, G. Shiu and G. Zoccarato, Flux flattening in axion monodromy inflation, JHEP06 (2017) 071 [arXiv:1703.09729] [INSPIRE]. · Zbl 1380.83312
[58] M. Kim and L. McAllister, Monodromy charge in D7-brane inflation, arXiv:1812.03532 [INSPIRE]. · Zbl 1456.81336
[59] I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special points of inflation in flux compactifications, Nucl. Phys.B 899 (2015) 414 [arXiv:1412.5537] [INSPIRE]. · Zbl 1331.81236
[60] H. Abe, T. Kobayashi and H. Otsuka, Natural inflation with and without modulations in type IIB string theory, JHEP04 (2015) 160 [arXiv:1411.4768] [INSPIRE]. · Zbl 1388.83628
[61] E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP10 (2015) 188 [arXiv:1508.00009] [INSPIRE]. · Zbl 1388.83938
[62] A. Hebecker, S. Leonhardt, J. Moritz and A. Westphal, Thraxions: ultralight throat axions, arXiv:1812.03999 [INSPIRE].
[63] G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, arXiv:1812.05016 [INSPIRE].
[64] A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci.5 (2018) 35 [arXiv:1807.00824] [INSPIRE].
[65] M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP10 (2016) 159 [arXiv:1606.08438] [INSPIRE]. · Zbl 1390.83123
[66] S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].
[67] M. Berg, E. Pajer and S. Sjors, Dante’s inferno, Phys. Rev.D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].
[68] I. Ben-Dayan, F.G. Pedro and A. Westphal, Hierarchical axion inflation, Phys. Rev. Lett.113 (2014) 261301 [arXiv:1404.7773] [INSPIRE].
[69] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys.B 479 (1996) 243 [hep-th/9606040] [INSPIRE]. · Zbl 0896.14024
[70] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP07 (2005) 066 [hep-th/0505160] [INSPIRE].
[71] B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP02 (2007) 018 [hep-th/0607223] [INSPIRE]. · Zbl 1119.81361
[72] M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP06 (2010) 004 [arXiv:1001.4008] [INSPIRE]. · Zbl 1290.81113
[73] J. Blaback et al., Smeared versus localised sources in flux compactifications, JHEP12 (2010) 043 [arXiv:1009.1877] [INSPIRE]. · Zbl 1294.81165
[74] F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass, JHEP07 (2012) 077 [arXiv:1201.5378] [INSPIRE]. · Zbl 1397.81284
[75] J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP12 (2012) 122 [arXiv:1208.0261] [INSPIRE]. · Zbl 1397.81270
[76] F.F. Gautason, M. Schillo, T. Van Riet and M. Williams, Remarks on scale separation in flux vacua, JHEP03 (2016) 061 [arXiv:1512.00457] [INSPIRE]. · Zbl 1388.83618
[77] E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA flux compactifications, JHEP06 (2008) 084 [arXiv:0804.1248] [INSPIRE].
[78] T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys.B 718 (2005) 153 [hep-th/0412277] [INSPIRE]. · Zbl 1207.81121
[79] R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci.59 (2009) 269 [arXiv:0902.3251] [INSPIRE].
[80] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
[81] S. Hosono, A. Klemm and S. Theisen, Lectures on mirror symmetry, Springer, Berlin Germany (1994). · Zbl 0812.53061
[82] Y. Honma and M. Manabe, Exact Kähler potential for Calabi-Yau fourfolds, JHEP05 (2013) 102 [arXiv:1302.3760] [INSPIRE]. · Zbl 1342.81499
[83] F. Denef, Les houches lectures on constructing string vacua, Les Houches87 (2008) 483 [arXiv:0803.1194] [INSPIRE].
[84] G. Curio, A. Klemm, D. Lüst and S. Theisen, On the vacuum structure of type-II string compactifications on Calabi-Yau spaces with H fluxes, Nucl. Phys.B 609 (2001) 3 [hep-th/0012213] [INSPIRE]. · Zbl 0969.81615
[85] F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP05 (2004) 072 [hep-th/0404116] [INSPIRE].
[86] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE]. · Zbl 0984.81143
[87] M. Cicoli et al., Explicit de Sitter flux vacua for global string models with chiral matter, JHEP05 (2014) 001 [arXiv:1312.0014] [INSPIRE]. · Zbl 1333.83178
[88] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].
[89] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP08 (2005) 007 [hep-th/0505076] [INSPIRE].
[90] M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP10 (2012) 146 [arXiv:1206.0819] [INSPIRE]. · Zbl 1397.83137
[91] J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP01 (2006) 146 [hep-th/0509012] [INSPIRE].
[92] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE]. · Zbl 1244.83036
[93] D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP11 (2006) 031 [hep-th/0607050] [INSPIRE].
[94] M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev.D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].
[95] M. Berg, M. Haack and B. Körs, On the moduli dependence of nonperturbative superpotentials in brane inflation, in the proceedings of the 10thInternational Symposium on particles, strings and cosmology, (PASCOS 2004), August 18-19, Boston, U.S.A. (2004), hep-th/0409282 [INSPIRE].
[96] M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP10 (2008) 105 [arXiv:0805.1029] [INSPIRE]. · Zbl 1245.81155
[97] M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP02 (2012) 002 [arXiv:1107.0383] [INSPIRE]. · Zbl 1309.81149
[98] T.W. Grimm and A. Klemm, U(1) mediation of flux supersymmetry breaking, JHEP10 (2008) 077 [arXiv:0805.3361] [INSPIRE]. · Zbl 1245.81169
[99] G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett.B 624 (2005) 270 [hep-th/0507131] [INSPIRE]. · Zbl 1247.83215
[100] M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett.96 (2006) 021601 [hep-th/0508171] [INSPIRE].
[101] M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP11 (2005) 030 [hep-th/0508043] [INSPIRE].
[102] M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP09 (2007) 031 [arXiv:0704.0737] [INSPIRE].
[103] V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys.B 422 (1994) 57 [hep-th/9402005] [INSPIRE]. · Zbl 0990.81734
[104] C.P. Burgess, J.P. Derendinger, F. Quevedo and M. Quirós, On gaugino condensation with field dependent gauge couplings, Annals Phys.250 (1996) 193 [hep-th/9505171] [INSPIRE]. · Zbl 0897.58055
[105] D. Junghans and G. Shiu, Brane curvature corrections to \[theN=1 \mathcal{N}=1\] type-II/F-theory effective action, JHEP03 (2015) 107 [arXiv:1407.0019] [INSPIRE].
[106] G. Curio and V. Spillner, On the modified KKLT procedure: a case study for the P(11169) [18] model, Int. J. Mod. Phys.A 22 (2007) 3463 [hep-th/0606047] [INSPIRE].
[107] M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A note on the magnitude of the flux superpotential, JHEP01 (2014) 027 [arXiv:1310.6694] [INSPIRE].
[108] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and backreaction in F-term axion monodromy inflation, Nucl. Phys.B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE]. · Zbl 1328.83197
[109] W. Buchmüller et al., Challenges for large-field inflation and moduli stabilization, JHEP04 (2015) 058 [arXiv:1501.05812] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.