×

Fractal zeta functions and complex dimensions of relative fractal drums. (English) Zbl 1356.11061

Summary: The theory of “zeta functions of fractal strings” has been initiated by the first author in the early 1990s and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 2009, the same author introduced a new class of zeta functions, called “distance zeta functions”, which since then has enabled us to extend the existing theory of zeta functions of fractal strings and sprays to arbitrary bounded (fractal) sets in Euclidean spaces of any dimension. A natural and closely related tool for the study of distance zeta functions is the class of “tube zeta functions”, defined using the tube function of a fractal set. These three classes of zeta functions, under the name of “fractal zeta functions”, exhibit deep connections with Minkowski contents and upper box dimensions, as well as, more generally, with the complex dimensions of fractal sets. Further extensions include zeta functions of relative fractal drums, the box dimension of which can assume negative values, including minus infinity. We also survey some results concerning the existence of the meromorphic extensions of the spectral zeta functions of fractal drums, based in an essential way on earlier results of the first author on the spectral (or eigenvalue) asymptotics of fractal drums. It follows from these results that the associated spectral zeta function has a (nontrivial) meromorphic extension, and we use some of our results about fractal zeta functions to show the new fact according to which the upper bound obtained for the corresponding abscissa of meromorphic convergence is optimal.

MSC:

11M41 Other Dirichlet series and zeta functions
28A12 Contents, measures, outer measures, capacities
28A75 Length, area, volume, other geometric measure theory
28A80 Fractals
30D10 Representations of entire functions of one complex variable by series and integrals
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Baker, Transcendental Number Theory. Cambridge Univ. Press, Cambridge, 1975. · Zbl 0297.10013
[2] M. V. Berry, Distribution of modes in fractal resonators. In: Structural Stability in Physics (Proc. Internat. Symposia Appl. Catastrophe Theory and Topological Concepts in Phys., Inst. Inform. Sci., Univ. T¨ubingen, T¨ubingen, 1978), Springer-Verlag, Berlin, 1979, 51- 53. · Zbl 1266.28006
[3] M. V. Berry, Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals. In: Geometry of the Laplace Operator, Proc. Sympos. Pure Math. 36, Amer. Math. Soc., Providence, RI, 1980, 13-38. · Zbl 0437.73014
[4] G. Bouligand, Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. (2) 52 (1928), 320-344 and 361-376. · JFM 54.0644.03
[5] H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, 1983; expanded English version: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. · JFM 43.0436.01
[6] Brossard J., Carmona R.: Can one hear the dimension of a fractal?. Comm. Math. Phys. 104, 103-122 (1986) · Zbl 0607.58043 · doi:10.1007/BF01210795
[7] Caetano A. M.: On the search for the asymptotic behaviour of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains. Internat. J. Appl. Sci. Comput. 2, 261-287 (1995)
[8] E. Christensen, C. Ivan and M. L. Lapidus, Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217 (2008), 42-78. · Zbl 1133.28002
[9] R. Courant and D. Hilbert, Methods of Mathematical Physics. I. Interscience Publ. Inc., New York, 1953. · Zbl 0051.28802
[10] A. Deniz, Ş,. Koçak, Y. Özdemir and A. E. Üreyen, Tube volumes via functional equations. J. Geom. 105 (2014), 1-10. · Zbl 1318.28021
[11] K. E. Ellis, M. L. Lapidus, M. C. Mackenzie and J. A. Rock, Partition zeta functions, multifractal spectra, and tapestries of complex dimensions. In: Benoîit Mandelbrot: A Life in Many Dimensions (M. Frame and N. Cohen, eds.), The Mandelbrot Memorial Volume, World Scientific, Singapore, 2015, 267-322 (in press). · Zbl 1351.28011
[12] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications. 3rd ed., John Wiley and Sons, Chichester, 2014. · Zbl 1285.28011
[13] J. Fleckinger-Pellé and D. Vassiliev, An example of a two-term asymptotics for the “counting function” of a fractal drum. Trans. Amer. Math. Soc. 337 (1993), 99-116. · Zbl 0851.35102
[14] H. Federer, Geometric Measure Theory. Springer-Verlag, New-York, 1969. · Zbl 0176.00801
[15] A. O. Gel’fond, Transcendental and Algebraic Numbers. Dover Phoenix editions, Dover Publications, Inc., New York, 1960. · Zbl 0739.34065
[16] J. Gerling, Untersuchungen zur Theorie von Weyl-Berry-Lapidus. Graduate Thesis (Diplomarbeit), Dept. of Physics, Universität Osnabr ück, Germany, 1992.
[17] J. Gerling and H.-J. Schmidt, Self-similar drums and generalized Weierstrass functions. Phys. A. 191 (1992), 536-539. · Zbl 1274.28016
[18] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[19] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah- Singer Index Theorem. 2nd ed., Publish or Perish, Wilmington, 1984. (New revised and enlarged edition, in Stud. Adv. Math., CRC Press, Boca Raton, 1995.) · Zbl 0565.58035
[20] P. Hajłasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254 (2008), 1217-1234. · Zbl 1136.46029
[21] P. Hajłasz, P. Koskela and H. Tuominen, Measure density and extendability of Sobolev functions. Rev. Mat. Iberoam. 24 (2008), 645-669. · Zbl 1226.46029
[22] B. M. Hambly and M. L. Lapidus, Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics. Trans. Amer. Math. Soc. 358 (2006), 285-314. · Zbl 1079.60019
[23] R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations. Acta Math. 125 (1970), 39-56. · Zbl 0214.10001
[24] C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function. Mem. Amer. Math. Soc. 127 (1997), 1-97. · Zbl 0877.35086
[25] H. Herichi and M. L. Lapidus, Fractal Strings, Quantized Number Theory and the Riemann Hypothesis: From Infinitesimal Shifts and Spectral Operators to Phase Transitions and Universality. Research Monograph, Preprint, 2014. · Zbl 1508.81845
[26] H. Herichi and M. L. Lapidus, Riemann zeros and phase transitions via the spectral operator on fractal strings. J. Phys. A 45 (2012), 374005, 23 pp. · Zbl 1252.81067
[27] H. Herichi and M. L. Lapidus, Fractal complex dimensions, Riemann hypothesis and invertibility of the spectral operator. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, RI, 2013, 51-89. · Zbl 1321.11082
[28] Herichi H., Lapidus M. L.: Truncated infinitesimal shifts, spectral operators and quantized universality of the Riemann zeta function. Ann. Fac. Sci. Toulouse Math. 23(6), 621-664 (2014) · Zbl 1357.11074 · doi:10.5802/afst.1419
[29] H. Herichi and M. L. Lapidus, Quantized Riemann zeta function: Its operator-valued Dirichlet series, Euler product and analytic continuation. In preparation. · Zbl 1357.11074
[30] Hörmander L.: The spectral function of an elliptic operator. Acta Math. 121, 193-218 (1968) · Zbl 0164.13201 · doi:10.1007/BF02391913
[31] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. 2nd ed. (of the 1983 edn.), Springer-Verlag, Berlin, 1990. · Zbl 0712.35001
[32] L. Hörmander, The Analysis of Linear Partial Differential Operators. Vols. II-IV, Springer-Verlag, Berlin, 1983, 1985. · Zbl 0521.35002
[33] Hutchinson J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[34] Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta. Math. 147, 1-61 (1981) · Zbl 0489.30017 · doi:10.1007/BF02392869
[35] Kac M.: Can one hear the shape of a drum?. Amer. Math. Monthly. 73, 1-23 (1966) · Zbl 0139.05603 · doi:10.2307/2313748
[36] N. Lal and M. L. Lapidus, Hyperfunctions and spectral zeta functions of Laplacians on self-similar fractals. J. Phys. A 45 (2012), 365205, 14 pp. · Zbl 1256.28004
[37] N. Lal and M. L. Lapidus, The decimation method for Laplacians on fractals: Spectra and complex dynamics, In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (D. Carfì et al., eds.), Contemp. Math. 601, Amer. Math. Soc., Providence, RI, 2013, 227-249. · Zbl 1321.58014
[38] Lapidus M. L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Amer. Math. Soc. 325, 465-529 (1991) · Zbl 0741.35048 · doi:10.1090/S0002-9947-1991-0994168-5
[39] M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Internat. Conf. (Birmingham, 1990), Academic Press, New York, 1992, 151-182. · Zbl 0736.58040
[40] M. L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture. In: Ordinary and Partial Differential Equations, (B. D. Sleeman and R. J. Jarvis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, 1992), Pitman Research Notes in Math. Series 289, Longman Scientific and Technical, London, 1993, 126-209. · Zbl 0830.35094
[41] M. L. Lapidus, Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions. Topol. Methods Nonlinear Anal. 4 (1994), 137-195. · Zbl 0836.35108
[42] M. L. Lapidus, Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals. In: Harmonic Analysis and Nonlinear Differential Equations (A Volume in Honor of Victor L. Shapiro), Contemp. Math. 208, Amer. Math. Soc., Providence, RI, 1997, 211-252. · Zbl 0889.58012
[43] M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes. Amer. Math. Soc., Providence, RI, 2008. · Zbl 1150.11003
[44] M. L. Lapidus, Towards quantized number theory: Spectral operators and an asymmetric criterion for the Riemann hypothesis. Preprint, 2014. (For inclusion in the special issue of the Philosophical Transactions of the Royal Society titled “Geometric Concepts in the Foundations of Physics”, 2015.) · Zbl 1192.28003
[45] M. L. Lapidus, The sound of fractal strings and the Riemann hypothesis. Preprint, 2014. (For inclusion in Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday (C. B. Pomerance and T. Rassias, eds.), Springer, Berlin, Heidelberg and New York, 2015.) · Zbl 1336.28004
[46] M. L. Lapidus, Riemann hypothesis, weighted Bergman spaces and quantized Riemann zeta function (tentative title). In preparation.
[47] M. L. Lapidus, Quantized Weyl conjectures, spectral operators and Polya-Hilbert operators (tentative title). In preparation. · Zbl 1207.28004
[48] M. L. Lapidus, J. Lévy-Véhel and J. A. Rock, Fractal strings and multifractal zeta functions. Lett. Math. Phys. 88 (2009), 101-129. · Zbl 1170.11030
[49] M. L. Lapidus and H. Lu, The geometry of p-adic fractal strings: A comparative survey. In: Advances in Non-Archimedean Analysis, Proc. 11th Internat. Conference on “p-Adic Functional Analysis” (Clermont-Ferrand, France, 2010), (J. Araujo, B. Diarra and A. Escassut, eds.), Contemp. Math. 551, Amer. Math. Soc., Providence, RI, 2011, 163-206. · Zbl 1276.37053
[50] Lapidus M. L., Maier H.: Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée. C. R. Acad Sci.Paris Sér. I Math. 313, 19-24 (1991) · Zbl 0751.35030
[51] Lapidus M. L., Maier H.: The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. 52(2), 15-34 (1995) · Zbl 0836.11031 · doi:10.1112/jlms/52.1.15
[52] Lapidus M. L., Neuberger J. W., Renka R. J., Griffith C. A.: Snowflake harmonics and computer graphics: Numerical computation of spectra on fractal domains. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, 1185-1210 (1996) · Zbl 0920.73165 · doi:10.1142/S0218127496000680
[53] Lapidus M.L., Pang M.M.H.: Eigenfunctions of the Koch snowflake drum. Comm. Math. Phys. 172, 359-376 (1995) · Zbl 0857.35093 · doi:10.1007/BF02099432
[54] Lapidus M.L., Pearse E.P.J.: A tube formula for the Koch snowflake curve, with applications to complex dimensions. J. Lond. Math. Soc. (2) 74, 397-414 (2006) · Zbl 1110.26006 · doi:10.1112/S0024610706022988
[55] M. L. Lapidus and E. P. J. Pearse, Tube formulas for self-similar fractals. In: Analysis on Graphs and Its Applications (P. Exner et eds.), Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence, RI, 2008, 211-230. · Zbl 1157.28001
[56] Lapidus M.L., Pearse E.P.J.: Tube formulas and complex dimensions of self-similar tilings. Acta Appl. Math. 112, 91-137 (2010) · Zbl 1244.28013 · doi:10.1007/s10440-010-9562-x
[57] Lapidus M.L., Pearse E.P.J., Winter S.: Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators. Adv. Math. 227, 1349-1398 (2011) · Zbl 1274.28016 · doi:10.1016/j.aim.2011.03.004
[58] M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, 2013, 185-203. · Zbl 1321.28017
[59] Lapidus M.L., Pomerance C.: Fonction zěta de Riemann et conjecture de Weyl-Berry pour les tambours fractals. C. R. Acad. Paris Sér. I Math. 310, 343-348 (1990) · Zbl 0707.58046
[60] Lapidus M.L., Pomerance C.: The Riemann zeta-function the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66, 41-69 (1993) · Zbl 0739.34065 · doi:10.1112/plms/s3-66.1.41
[61] Lapidus M.L., Pomerance C.: Counterexamples to the modified Weyl-Berry conjecture on fractal drums. Math. Proc. Cambridge Philos. Soc. 119, 167-178 (1996) · Zbl 0858.58052 · doi:10.1017/S0305004100074053
[62] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Research Monograph, to appear. · Zbl 1401.11001
[63] M. L. Lapidus, G. Radunović and D. Žubrinić, Distance and tube zeta functions of fractals and arbitrary compact sets. Preprint, 2014. · Zbl 1367.28004
[64] M. L. Lapidus, G. Radunović and D. Žubrinić, Complex dimensions of fractals and meromorphic extensions of fractal zeta functions. preparation. · Zbl 1365.28008
[65] M. L. Lapidus, G. Radunović and D. Žubrinić, Zeta functions complex dimensions of relative fractal drums: Theory, examples and applications. In preparation. · Zbl 1406.11092
[66] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory. Preprint, 2014. (For inclusion in the Proceedings of the International Conference “Geometry and Stochastics V”, Tabarz, Germany, March 2014, Progress in Probability, Birkhäuser, Basel, Boston and Berlin, 2015, C. Bandt, K. Falconer and M. Zähle, eds.; based on a plenary lecture given by the first author at that conference.) · Zbl 1356.11061
[67] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces. Preprint, 2014. · Zbl 1441.11234
[68] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas for compact sets and relative fractal drums, with application to a Minkowski measurability criterion. Preprint, 2014. · Zbl 1356.11061
[69] Lapidus M.L., Rock J.A.: Towards zeta functions and complex dimensions of multifractals. Complex Var. Elliptic Equ. 54, 545-560 (2009) · Zbl 1192.28003 · doi:10.1080/17476930802326758
[70] M. L. Lapidus, J. A. Rock and D. Žubrinić, Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I: Fractals in Pure Mathematics (D. Carfì et al., eds.), Contemp. Math. 600, Amer. Math. Soc., Providence, RI, 2013, 239- 271. · Zbl 1321.11096
[71] M. L. Lapidus and J. J. Sarhad, Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets. J. Noncommut. Geom., to appear. · Zbl 1320.28015
[72] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory. Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, Birkhäuser, Boston, 2000. · Zbl 0981.28005
[73] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monogr. Math., Springer, New York, 2006. · Zbl 1119.28005
[74] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings. 2nd revised and enlarged ed. (of the 2006 ed.), Springer Monogr. Math., Springer, New York, 2013. · Zbl 1261.28011
[75] Lévy-Véhel J., Mendivil F.: Multifractal and higher-dimensional zeta functions. Nonlinearity 24, 259-276 (2011) · Zbl 1207.28004 · doi:10.1088/0951-7715/24/1/013
[76] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, English transl., Springer-Verlag, Berlin, 1972. · Zbl 0227.35001
[77] B. B. Mandelbrot, The Fractal Geometry of Nature. Revised and enlarged ed. (of the 1977 ed.), W. H. Freeman, New York, 1983.
[78] Maz’ja V.G.: Sobolev Spaces. Springer-Verlag, Berlin (1985) · Zbl 0692.46023 · doi:10.1007/978-3-662-09922-3
[79] G. Métivier, Théorie spectrale d’opérateurs elliptiques sur des ouverts irréguliers. In: Séminaire Goulaic-Schwartz, No. 21, Ecole Polytechnique, Paris, 1973. · Zbl 0264.47040
[80] G. Métivier, Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites. Thèse de Doctorat d’Etat, Mathématiques, Université de Nice, France, 1976. · Zbl 1143.28006
[81] Métivier G.: Valeurs propres de problèmes aux limites elliptiques irréguliers. Bull. Soc. Math. France Mém. 51-52, 125-219 (1977) · Zbl 0401.35088
[82] S. Molchanov and B. Vainberg, On spectral asymptotics for domains with fractal boundaries. Comm. Math. Phys. 183 (1997), 85-117. · Zbl 0867.58068
[83] Pearse E.P.J.: Canonical self-affine tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151-3169 (2007) · Zbl 1143.28006 · doi:10.1512/iumj.2007.56.3220
[84] Pearse E.P.J., Winter S.: Geometry of canonical self-similar tilings. Rocky Mountain J. Math. 42, 1327-1357 (2012) · Zbl 1266.28006 · doi:10.1216/RMJ-2012-42-4-1327
[85] Pham The Lai, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien. Math. Scand. 48 (1981), 5-38. · Zbl 0466.35060
[86] Ch. Pommerenke, Boundary Behavior of Conformal Maps. Springer, New York, 1992. · Zbl 0534.30008
[87] A. G. Postnikov, Tauberian Theory and Its Applications. Tr. Mat. Inst. Steklova 144 (1979); English transl.: Proc. Steklov Inst. Math., No. 2, Amer. Math. Soc., Providence, RI, 1980. · Zbl 0402.40004
[88] G. Radunović, Fractal Analysis of Unbounded Sets in Euclidean Spaces and Lapidus Zeta Functions. Ph.D. Thesis, University of Zagreb, Croatia, 2015.
[89] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. IV, Analysis of Operators, Academic Press, New York, 1979. · Zbl 0405.47007
[90] R. T. Seeley, Complex powers of an elliptic operator. In: Proc. Symposia Pure Math. 10, Amer. Math. Soc., Providence, RI, 1967, 288-307. · Zbl 0159.15504
[91] Seeley R.T.: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of \[{\mathbb{R}^3}\] R3 . Adv. Math. 29, 244-269 (1978) · Zbl 0382.35043 · doi:10.1016/0001-8708(78)90013-0
[92] Seeley R.T.: An estimate near the boundary for the spectral counting function of the Laplace operator. Amer. J. Math. 102, 869-902 (1980) · Zbl 0447.35029 · doi:10.2307/2374196
[93] J.-P. Serre, A Course in Arithmetic. Springer-Verlag, Berlin, 1973 (Translated from the French, Graduate Texts in Math. 7). · Zbl 0256.12001
[94] B. Simon, Functional Integration and Quantum Physics. Academic Press, New York, 1979. · Zbl 0434.28013
[95] Stachó L.L.: On the volume function of parallel sets. Acta Sci. Math. 38, 365-374 (1976) · Zbl 0342.52014
[96] A. Teplyaev, Spectral zeta functions of symmetric fractals. In: Fractal Geometry and Stochastics III, Progr. Probab. 57, Birkhäuser-Verlag, Basel, 2004, 245-262. · Zbl 1060.28010
[97] Teplyaev A.: Spectral zeta functions of fractals and the complex dynamics of polynomials. Trans. Amer. Math. Soc. 359, 4339-4358 (2007) · Zbl 1129.28010 · doi:10.1090/S0002-9947-07-04150-5
[98] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function. 2nd ed. (revised by D. R. Heath-Brown), Oxford University Press, Oxford, 1986. · Zbl 0601.10026
[99] Tricot C.: Dimensions aux bords d’un ouvert. Ann. Sci. Math. Québec 11, 205-235 (1987) · Zbl 0632.28003
[100] M. van den Berg and P. B. Gilkey, A comparison estimate for the heat equation with an application to the heat content of the s-adic von Koch snowflake. Bull. Lond. Math. Soc. 30 (1998), 404-412. · Zbl 0930.35019
[101] I. M. Vinogradov (ed.), Matematicheskaya entsiklopediya. Vol. 2, Sov. Entsiklopediya, Moscow, 1979. (Also: online, English transl.: Yu. V. Komlenko and E. L. Tonkov (authors), Quasi-periodic function. Encyclopedia of Mathematics, public wiki monitored by an editorial board under the management of the European Mathematical Society.) · Zbl 0463.00033
[102] Weyl H.: Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung. J. Reine Angew. Math. 141, 1-11 (1912) · JFM 43.0948.03
[103] Weyl H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441-479 (1912) · JFM 43.0436.01 · doi:10.1007/BF01456804
[104] H. Weyl, Hermann Weyl: Gesammelte Abhandlungen. (Collected Works), Springer-Verlag, Berlin, 1968. · Zbl 0164.30103
[105] D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications. Real Anal. Exchange 31 (2005/2006), 315-354. · Zbl 1142.37315
[106] D. Žubrinić, Hausdorff dimension of singular sets of Sobolev functions and applications. In: More Progress in Analysis, Proc. of the 5th Internat. ISAAC Congress (H. G. W. Begher and F. Nicolosi, eds.), World Scientific, 2009, 793-802. · Zbl 1187.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.