×

Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions. (English) Zbl 1404.65084

Summary: Solving partial differential equations with discontinuous solutions is an important challenging problem in numerical analysis. To this end, there are some methods such as finite volume method, discontinuous Galerkin approach and particle technique that are able to solve these problems. In the current paper, the moving Kriging element-free Galerkin method has been combined with the variational multiscale algorithm to obtain acceptable and high-resolution solutions. For testing this technique, we select some PDEs with discontinuous solution such as Burgers’, Sod’s shock tube, advection-reaction-diffusion, Kuramoto-Sivashinsky, Boussinesq and shallow water equations. First, we obtain a time-discrete scheme by approximating time derivative via finite difference technique. Then we introduce the moving Kriging interpolation and also obtain their shape functions. We use the element-free Galerkin method for approximating the spatial derivatives. This method uses a weak form of the considered equation that is similar to the finite element method with the difference that in the classical element-free Galerkin method test and trial functions are moving least squares approximation (MLS) shape functions. Since the shape functions of moving least squares (MLS) approximation do not have Kronecker delta property, we cannot implement the essential boundary condition, directly. Thus, we employ the shape functions of moving Kriging interpolation and radial point interpolation technique which have the mentioned property. Also, in the element-free Galekin method, we do not use any triangular, quadrangular or other type of meshes. The element-free Galerkin method is a global method while finite element method is a local one. This technique employs a background mesh for integration which makes it different from the truly mesh procedures. Several test problems are solved and numerical simulations are reported which confirm the efficiency of the proposed schemes.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65D05 Numerical interpolation
76R50 Diffusion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abedian, R; Adibi, H; Dehghan, M, A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws, Comput Phys Commun, 185, 106-127, (2014) · Zbl 1344.65086 · doi:10.1016/j.cpc.2013.08.020
[2] Abedian, R; Adibi, H; Dehghan, M, A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations, Comput Phys Commun, 184, 1874-1888, (2013) · Zbl 1344.65076 · doi:10.1016/j.cpc.2013.03.012
[3] Avesani, D; Dumbser, M; Bellin, A, A new class of moving-least-squares WENO-SPH schemes, J Comput Phys, 270, 278-299, (2014) · Zbl 1349.76661 · doi:10.1016/j.jcp.2014.03.041
[4] Belytschko, T; Lu, YY; Gu, L, Element free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[5] Belytschko, T; Krongauz, Y; Organ, D; Fleming, M; Krysl, P, Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[6] Bui, TQ; Nguyen, MN, A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput Struct, 89, 380-394, (2011) · doi:10.1016/j.compstruc.2010.11.006
[7] Bui, TQ; Zhang, C, Moving Kriging interpolation-based meshfree method for dynamic analysis of structures, Proc Appl Math Mech, 11, 197-198, (2011) · doi:10.1002/pamm.201110090
[8] Bui, TQ; Nguyen, MN; Zhang, C, A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis, Comput Methods Appl Mech Engin, 200, 1354-1366, (2011) · Zbl 1228.74110 · doi:10.1016/j.cma.2010.12.017
[9] Bratsos, AG, The solution of the Boussinesq equation using the method of lines, Comput Methods Appl Mech Eng, 157, 33-44, (1998) · Zbl 0952.76068 · doi:10.1016/S0045-7825(97)00211-9
[10] Bratsos, AG, A fourth-order numerical scheme for solving the modified Burgers equation, Comput Math Appl, 60, 1393-1400, (2010) · Zbl 1201.65151 · doi:10.1016/j.camwa.2010.06.021
[11] Chen, L; Liew, KM, A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput Mech, 47, 455-467, (2011) · Zbl 1241.80005 · doi:10.1007/s00466-010-0553-6
[12] Cheng, Y; Bai, FN; Peng, MJ, A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl Math Model, 38, 5187-5197, (2014) · Zbl 1449.74196 · doi:10.1016/j.apm.2014.04.008
[13] Cheng, Y; Li, J, A meshless method with complex variables for elasticity, Acta Phys Sin, 54, 4463-4471, (2005) · Zbl 1202.74163
[14] Cheng, Y; Peng, M, Boundary element free method for elastodynamics, Sci China G, 48, 641-657, (2005) · doi:10.1360/142004-25
[15] Chung, HJ; Belytschko, T, An error estimate in the EFG method, Comput Mech, 21, 91-100, (1998) · Zbl 0910.73060 · doi:10.1007/s004660050286
[16] Claina, S; Rochette, D, First- and second-order finite volume methods for the one-dimensional nonconservative Euler system, J Comput Phys, 228, 8214-8248, (2009) · Zbl 1422.76171 · doi:10.1016/j.jcp.2009.07.038
[17] Dai, KY; Liu, GR; Lim, KM; Gu, YT, Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput Mech, 32, 60-70, (2003) · Zbl 1035.74059 · doi:10.1007/s00466-003-0462-z
[18] Dai, BD; Cheng, J; Zheng, BJ, Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl Math Comput, 219, 10044-10052, (2013) · Zbl 1307.80008
[19] Dai, BD; Cheng, J; Zheng, BJ, A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int J Appl Mech, 5, 1350011-1350021, (2013) · doi:10.1142/S1758825113500117
[20] Daǧ, İ; Canivar, A; Ṣahin, A, Taylor-Galerkin and Taylor-collocation methods for the numerical solutions of Burgers equation using B-splines, Commun Nonlinear Sci Numer Simul, 16, 2696-2708, (2011) · Zbl 1221.65254 · doi:10.1016/j.cnsns.2010.10.009
[21] Dehghan, M, Weighted finite difference techniques for the one-dimensional advection-diffusion equation, Appl Math Comput, 147, 307-319, (2004) · Zbl 1034.65069
[22] Dehghan, M; Salehi, R, A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Appl Math Model, 36, 1939-1956, (2012) · Zbl 1243.76069 · doi:10.1016/j.apm.2011.07.075
[23] Dehghan, M, Time-splitting procedures for the solution of the two-dimensional transport equation, Kybernetes, 36, 791-805, (2007) · Zbl 1193.93013 · doi:10.1108/03684920710749857
[24] Dehghan, M, Numerical solution of the three-dimensional advection-diffusion equation, Appl Math Comput, 150, 5-19, (2004) · Zbl 1038.65074
[25] Dhawan, S; Bhowmik, SK; Kumar, S, Galerkin-least square B-spline approach toward advection-diffusion equation, Appl Math Comput, 261, 128-140, (2015) · Zbl 1410.76165
[26] Gao, P, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal: Theory, Methods Appl, 117, 133-147, (2015) · Zbl 1307.93067 · doi:10.1016/j.na.2015.01.015
[27] Gu, L, Moving Kriging interpolation and element-free Galerkin method, Int J Numer Methods Eng, 56, 1-11, (2003) · Zbl 1062.74652 · doi:10.1002/nme.553
[28] Gu, YT; Zhuang, P; Liu, F, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, Comput Model Eng Sci (CMES), 56, 303-334, (2010) · Zbl 1231.65178
[29] Gu, YT; Wang, QX; Lam, KY, A meshless local Kriging method for large deformation analyses, Comput Methods Appl Mech Eng, 196, 1673-1684, (2007) · Zbl 1173.74471 · doi:10.1016/j.cma.2006.09.017
[30] Gu, YT; Liu, GR, A local point interpolation method for static and dynamic analysis of thin beams, Comput Methods Appl Mech Eng, 190, 5515-5528, (2001) · Zbl 1059.74060 · doi:10.1016/S0045-7825(01)00180-3
[31] Gu, YT; Liu, GR, A boundary point interpolation method for stress analysis of solids, Comput Mech, 28, 47-54, (2002) · Zbl 1115.74380 · doi:10.1007/s00466-001-0268-9
[32] Gu, YT; Wang, W; Zhang, LC; Feng, XQ, An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields, Eng Fract Mech, 78, 175-190, (2011) · doi:10.1016/j.engfracmech.2010.10.014
[33] Greenough, JA; Rider, WJ, A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov, J Comput Phys, 196, 259-281, (2004) · Zbl 1115.76370 · doi:10.1016/j.jcp.2003.11.002
[34] Hauke, G; Garćia-Olivares, A, Variational subgrid scale formulations for the advection-diffusion-reaction equation, Comput Methods Appl Mech Eng, 190, 6847-6865, (2001) · Zbl 0996.76074 · doi:10.1016/S0045-7825(01)00262-6
[35] Huang W, Russell RD (2010) Adaptive moving mesh methods. Springer, Berlin · Zbl 1227.65090
[36] Huang, W; Zheng, L; Zhan, X, Adaptive moving mesh methods for simulating onedimensional groundwater problems with sharp moving fronts, Int J Numer Methods Eng, 54, 1579-1603, (2002) · Zbl 1098.76052 · doi:10.1002/nme.482
[37] Jafari, H; Borhanifar, A; Karimi, SA, New solitary wave solutions for the bad Boussinesq and good Boussinesq equations, Numer Methods Partial Differ Equ, 25, 1231-1237, (2009) · Zbl 1172.65380 · doi:10.1002/num.20400
[38] Jia, X; Zeng, F; Gu, Y, Semi-analytical solutions to one-dimensional advection-diffusion equations with variable diffusion coefficient and variable flow velocity, Appl Math Comput, 221, 268-281, (2013) · Zbl 1329.76337
[39] Jiwari, R, A hybrid numerical scheme for the numerical solution of the Burgers equation, Comput Phys Commun, 188, 59-67, (2015) · Zbl 1344.65082 · doi:10.1016/j.cpc.2014.11.004
[40] Khan, LA; Liu, PL-F, An operator splitting algorithm for coupled one-dimensional advection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 127, 181-201, (1995) · Zbl 0862.76060 · doi:10.1016/0045-7825(95)00839-5
[41] Khater, AH; Temsah, RS, Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods, Comput Math Appl, 56, 1465-1472, (2008) · Zbl 1155.65381 · doi:10.1016/j.camwa.2008.03.013
[42] Krongauz, Y; Belytschko, T, EFG approximation with discontinuous derivatives, Int J Numer Methods Eng, 41, 1215-1233, (1998) · Zbl 0906.73063 · doi:10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
[43] Kumar, A; Jaiswal, DK; Kumar, N, Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media, J Hydrol, 380, 330-337, (2010) · doi:10.1016/j.jhydrol.2009.11.008
[44] Lakestani, M; Dehghan, M, Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions, Appl Math Model, 36, 605-617, (2012) · Zbl 1236.65114 · doi:10.1016/j.apm.2011.07.028
[45] Lai, H; Ma, CF, Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation, Physica A, 388, 1405-1412, (2009) · doi:10.1016/j.physa.2009.01.005
[46] Lam, KY; Wang, QX; Li, H, A novel meshless approach local Kriging (lokriging) method with two-dimensional structural analysis, Comput Mech, 33, 235-244, (2004) · Zbl 1067.74074 · doi:10.1007/s00466-003-0524-2
[47] Lancaster, P; Salkauskas, K, Surfaces generated by moving least squares methods, Math Comput, 37, 141-158, (1981) · Zbl 0469.41005 · doi:10.1090/S0025-5718-1981-0616367-1
[48] Lee, CK; Zhou, CE, On error estimation and adaptive refinement for element free Galerkin method part I: stress recovery and a posteriori error estimation, Comput Struct, 82, 413-428, (2004) · doi:10.1016/j.compstruc.2003.10.018
[49] Lee, CK; Zhou, CE, On error estimation and adaptive refinement for element free Galerkin method part II: adaptive refinement, Comput Struct, 82, 429-443, (2004) · doi:10.1016/j.compstruc.2003.10.017
[50] LeVeque R (2004) Finite volume methods for hyperbolic problems, Cambridge texts in applied mathematics. Cambridge University Press, Cambridge
[51] Li, H; Wang, QX; Lam, KY, Development of a novel meshless local Kriging (lokriging) method for structural dynamic analysis, Comput Methods Appl Mech Eng, 193, 2599-2619, (2004) · Zbl 1067.74598 · doi:10.1016/j.cma.2004.01.010
[52] Li, XG; Dai, BD; Wang, LH, A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin Phys B, 19, 120202-120207, (2010) · doi:10.1088/1674-1056/19/12/120202
[53] Liu, B, An error analysis of a finite element method for a system of nonlinear advection-diffusion-reaction equations, Appl Numer Math, 59, 1947-1959, (2009) · Zbl 1169.65085 · doi:10.1016/j.apnum.2008.12.035
[54] Mittal, RC; Arora, G, Quintic B-spline collocation method for numerical solution of the Kuramoto-Sivashinsky equation, Commun Nonlinear Sci Numer Simul, 15, 2798-2808, (2010) · Zbl 1222.65110 · doi:10.1016/j.cnsns.2009.11.012
[55] Manoranjan, VS; Mitchell, AR; Ll, J, Morris, numerical solutions of the good Boussinesq equation, SIAM J Sci Stat Comput, 5, 946-957, (1984) · Zbl 0555.65080 · doi:10.1137/0905065
[56] Mohammadi, R, B-spline collocation algorithm for numerical solution of the generalized burger’s-Huxley equation, Numer Methods Partial Differ Equ, 29, 1173-1191, (2013) · Zbl 1276.65062 · doi:10.1002/num.21750
[57] Mohebbi, A; Dehghan, M, High-order compact solution of the one-dimensional heat and advection-diffusion equations, Appl Math Model, 34, 3071-3084, (2010) · Zbl 1201.65183 · doi:10.1016/j.apm.2010.01.013
[58] Mohebbi, A; Asgari, Z, Efficient numerical algorithms for the solution of “good” Boussinesq equation in water wave propagation, Comput Phys Commun, 182, 2464-2470, (2011) · Zbl 1457.65147 · doi:10.1016/j.cpc.2011.07.004
[59] Montecinos, GI; Toro, EF, Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes, J Comput Phys, 275, 415-442, (2014) · Zbl 1349.65378 · doi:10.1016/j.jcp.2014.06.018
[60] Seydaoǧlu M, Erdoǧan U, Öziṣ T (2016) Numerical solution of the Burgers equation with high order splitting methods. J Comput Appl Math 291:410-421 · Zbl 1329.65112
[61] Shiue, MC, An initial boundary value problem for one-dimensional shallow water magnetohydrodynamics in the solar tachocline, Nonlinear Anal: Theory, Methods Appl, 76, 215-228, (2013) · Zbl 1251.76065 · doi:10.1016/j.na.2012.08.016
[62] Sod, GA, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J Comput Phys, 27, 1-31, (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[63] Shokri, A; Dehghan, M, A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation, Comput Phys Commun, 181, 1990-2000, (2010) · Zbl 1426.76569 · doi:10.1016/j.cpc.2010.08.035
[64] Ponthot, JP; Belytschko, T, Arbitrary Lagrangian-Eulerian formulation for element free Galerkin method, Comput Methods Appl Mech Eng, 152, 19-46, (1998) · Zbl 0961.74079 · doi:10.1016/S0045-7825(97)00180-1
[65] Rademacher, JDM; Wattenberg, R, Viscous shocks in the destabilized Kuramoto-Sivashinsky, J Comput Nonlinear Dyn, 1, 336-347, (2006) · doi:10.1115/1.2338656
[66] Ren, H; Cheng, Y, The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng Anal Bound Elem, 36, 873-880, (2012) · Zbl 1352.65539 · doi:10.1016/j.enganabound.2011.09.014
[67] Tongsuk, P; Kanok-Nukulchai, W, Further investigation of element free Galerkin method using moving Kriging interpolation, Int J Comput Methods, 01, 345-365, (2004) · Zbl 1179.74182 · doi:10.1142/S0219876204000162
[68] Uddin, M; Haq, S; Islam, S, A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations, Appl Math Comput, 212, 458-469, (2009) · Zbl 1166.65385
[69] Wang, JF; Sun, FX; Cheng, YM; Huang, AX, Error estimates for the interpolating moving least-squares method, Appl Math Comput, 245, 321-342, (2014) · Zbl 1335.65018
[70] Wazwaz, AM, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl Math Comput, 190, 1198-1206, (2007) · Zbl 1123.65106
[71] Wazwaz, AM, An analytical study of compacton solutions for variants of Kuramoto-Sivashinsky equation, Appl Math Comput, 148, 571-585, (2004) · Zbl 1041.35069
[72] Wazwaz, AM, N-soliton solutions for shallow water waves equations in (1 + 1) and (2 + 1) dimensions, Appl Math Comput, 217, 8840-8845, (2011) · Zbl 1333.35244
[73] Zheng, B; Dai, BD, A meshless local moving Kriging method for two-dimensional solids, Appl Math Comput, 218, 563-573, (2011) · Zbl 1275.74033
[74] Zhang, Z; Hao, SY; Liew, KM; Cheng, YM, The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng Anal Boundary Elem, 37, 1576-1584, (2013) · Zbl 1287.74055 · doi:10.1016/j.enganabound.2013.08.017
[75] Zhang, LW; Deng, YJ; Liew, KM, An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng Anal Bound Elem, 40, 181-188, (2014) · Zbl 1297.65123 · doi:10.1016/j.enganabound.2013.12.008
[76] Zhang, LW; Deng, YJ; Liew, KM; Cheng, YM, The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation, Comput Math Appl, 68, 1093-1106, (2014) · Zbl 1367.35141 · doi:10.1016/j.camwa.2014.07.024
[77] Zhang, Z; Liew, KM; Cheng, Y, Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems, Eng Anal Bound Elem, 32, 100-107, (2008) · Zbl 1244.74204 · doi:10.1016/j.enganabound.2007.06.006
[78] Zhang, Z; Liew, KM; Cheng, Y; Lee, YY, Analyzing 2D fracture problems with the improved element free Galerkin method, Eng Anal Bound Elem, 32, 241-250, (2008) · Zbl 1244.74240 · doi:10.1016/j.enganabound.2007.08.012
[79] Zhang, L; Ouyang, J; Wang, X; Zhang, X, Variational multiscale element-free Galerkin method for 2D Burgers equation, J Comput Phys, 229, 7147-7161, (2010) · Zbl 1425.35167 · doi:10.1016/j.jcp.2010.06.004
[80] Zhang, L; Ouyang, J; Zhang, X; Zhang, W, On a multiscale element free Galerkin method for the Stokes problem, Appl Math Comput, 203, 745-753, (2008) · Zbl 1262.76026
[81] Zhang, L; Ouyang, J; Jiang, T; Ruan, C, Variational multiscale element free Galerkin method for the water wave problems, J Comput Phys, 230, 5045-5060, (2011) · Zbl 1416.76134 · doi:10.1016/j.jcp.2011.03.026
[82] Zhang, L; Ouyang, J; Zhang, X, The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers, Comput Phys Commun, 184, 1106-1118, (2013) · Zbl 1302.76110 · doi:10.1016/j.cpc.2012.12.002
[83] Zheng, B; Dai, B, A meshless local moving Kriging method for two-dimensional solids, Appl Math Comput, 218, 563-573, (2011) · Zbl 1275.74033
[84] Zhao, S; Ovadia, J; Liu, X; Zhang, YT; Nie, Q, Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems, J Comput Phys, 230, 5996-6009, (2011) · Zbl 1220.65120 · doi:10.1016/j.jcp.2011.04.009
[85] Zhu, P; Zhang, LW; Liew, KM, Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos Struct, 107, 298-314, (2014) · doi:10.1016/j.compstruct.2013.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.