×

zbMATH — the first resource for mathematics

A higher-order stress point method for non-ordinary state-based peridynamics. (English) Zbl 07228777
Summary: A higher-order stress point method for non-ordinary state-based peridynamic (NOSB-PD) is presented. The stress point is interpolated by its adjacent original nodes, where the second-order peridynamic derivatives are determined according to the peridynamic differential operator. By introducing the higher-order derivatives, the proposed stress point method could efficiently suppress the zero-energy mode oscillations. In contrast to other available control methods, the stress point method has better accuracy and stability, and much fewer period elongations in the dynamic calculation. More importantly, the method does not require any additional parameters and it can mitigate the errors arising from the surface effect as well. Furthermore, the proposed method can easily solve the discontinuities problems since it leverages the non-local property of the NOSB-PD. As demonstrated in the last two examples, the phenomena of crack propagation and branching are successfully captured by the proposed stress point method.
MSC:
65 Numerical analysis
74 Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, 48, 175-209 (2000) · Zbl 0970.74030
[2] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput Meth Appl Mech Eng, 199, 2437-2455 (2010) · Zbl 1231.74493
[3] Gerstle, W. H., Introduction to practical peridynamics (2015), World scientific
[4] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J Elasticity, 88, 151-184 (2007) · Zbl 1120.74003
[5] Silling S.A.Peridynamics: historical and future perspectives. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); 2015.
[6] Warren, T. L.; Silling, S. A.; Askari, A.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int J Solids Struct, 46, 1186-1195 (2009) · Zbl 1236.74012
[7] Littlewood D.J.Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. ASME 2010 International Mechanical Engineering Congress and Exposition, 2010. pp. 209-17.
[8] Tupek, M.; Rimoli, J.; Radovitzky, R., An approach for incorporating classical continuum damage models in state-based peridynamics, Comput Meth Appl Mech Eng, 263, 20-26 (2013) · Zbl 1286.74022
[9] Wang, Y.; Zhou, X.; Xu, X., Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics, Eng Fract Mech, 163, 248-273 (2016)
[10] Breitenfeld, M. S.; Geubelle, P. H.; Weckner, O.; Silling, S. A., Non-ordinary state-based peridynamic analysis of stationary crack problems, Comput Methods Appl Mech Eng, 272, 233-250 (2014) · Zbl 1296.74099
[11] Shou, Y. D.; Zhou, X. P.; Berto, F., 3D numerical simulation of initiation, propagation and coalescence of cracks using the extended non-ordinary state-based peridynamics, Theor Appl Fract Mech, 101, 254-268 (2019)
[12] Lu, J. Z.; Zhang, Y. T.; Muhammad, H.; Chen, Z. J.; Xiao, Y. F.; Ye, B. B., 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics, Eng Fract Mech, 207, 68-85 (2019)
[13] Ren, H. L.; Zhuang, X. Y.; Cai, Y. C.; Rabczuk, T., Dual-horizon peridynamics, Int J Numer Methods Eng, 108, 1451-1476 (2016)
[14] Rabczuk, T.; Ren, H. L., A peridynamics formulation for quasi-static fracture and contact in rock, Eng Geol, 225, 42-48 (2017)
[15] Ren, H. L.; Zhuang, X.; Rabczuk, T., Dual-horizon peridynamics: a stable solution to varying horizons, Comput Meth Appl Mech Eng, 318, 762-782 (2017) · Zbl 1439.74030
[16] Bobaru, F.; Foster, J. T.; Geubelle, P. H.; Silling, S. A., Handbook of peridynamic modeling (2016), Crc Press · Zbl 1351.74001
[17] Silling, S. A., Stability of peridynamic correspondence material models and their particle discretizations, Comput Meth Appl Mech Eng, 322, 42-57 (2017) · Zbl 1439.74017
[18] Wan, J.; Chen, Z.; Chu, X.; Liu, H., Improved method for zero-energy mode suppression in peridynamic correspondence model, Acta Mech Sin, 35, 1021-1032 (2019)
[19] Littlewood D.J.A nonlocal approach to modeling crack nucleation in AA 7075-T651. ASME 2011 International Mechanical Engineering Congress and Exposition, 2011. pp. 567-76.
[20] Wu, C. T.; Ren, B., A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process, Comput Meth Appl Mech Eng, 291, 197-215 (2015) · Zbl 1423.74067
[21] Yaghoobi, A.; Chorzepa, M. G., Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics, Comput Struct, 188, 63-79 (2017)
[22] Liu, G. R., Meshfree methods: moving beyond the finite element method (2009), Crc Press, Second Edition
[23] Ganzenmüller, G. C.; Hiermaier, S.; May, M., On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics, Comput Struct, 150, 71-78 (2015)
[24] Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput Mech, 53, 1251-1264 (2014) · Zbl 1398.74452
[25] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshless particle methods, Int J Numer Methods Eng, 48, 1359-1400 (2000) · Zbl 0972.74078
[26] Dyka, C. T.; Ingel, R. P., An approach for tension instability in smoothed particle hydrodynamics (SPH), Comput Struct, 57, 573-580 (1995) · Zbl 0900.73945
[27] Randles, P. W.; Libersky, L. D., Normalized SPH with stress points, Int J Numer Methods Eng, 48, 1445-1462 (2000) · Zbl 0963.74079
[28] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput Meth Appl Mech Eng, 193, 1035-1063 (2004) · Zbl 1060.74672
[29] Morris, J. P., A study of the stability properties of smooth particle hydrodynamics, PASA - Publ Astron Soc Aust, 13, 97-102 (1996)
[30] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Meth Appl Mech Eng, 139, 49-74 (1996) · Zbl 0918.73329
[31] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses, Int J Numer Methods Eng, 46, 341-385 (1999) · Zbl 0965.74079
[32] Liu, G. R.; Zhang, G. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A nodal integration technique for meshfree radial point interpolation method (NI-RPIM), Int J Solids Struct, 44, 3840-3860 (2007) · Zbl 1135.74050
[33] Luo, J.; Sundararaghavan, V., Stress-point method for stabilizing zero-energy modes in non-ordinary state-based peridynamics, Int J Solids Struct, 150, 197-207 (2018)
[34] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput Methods Appl Mech Eng, 304, 408-451 (2016) · Zbl 1425.74043
[35] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., Weak form of peridynamics for nonlocal essential and natural boundary conditions, Comput Meth Appl Mech Eng, 337, 598-631 (2018) · Zbl 1440.74030
[36] Rabczuk, T.; Ren, H. L.; Zhuang, X. Y., A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem, Comput Mater Continua, 59, 31-55 (2019)
[37] Ren, H. L.; Zhuang, X.; Rabczuk, T., A nonlocal operator method for solving partial differential equations, Comput Meth Appl Mech Eng, 358, Article 112621 pp. (2020) · Zbl 1441.35250
[38] Foster, J. T.; Xu, X., A generalized, ordinary, finite deformation constitutive correspondence model for peridynamics, Int J Solids Struct, 141, 245-253 (2018)
[39] Breitenfeld M.S.Quasi-static non-ordinary state-based peridynamics for the modeling of 3D fracture: university of illinois at urbana-champaign; 2014.
[40] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int J Numer Methods Eng, 61, 2316-2343 (2004) · Zbl 1075.74703
[41] Madenci, E.; Dorduncu, M.; Gu, X., Peridynamic least squares minimization, Comput Meth Appl Mech Eng, 348, 846-874 (2019) · Zbl 1440.74477
[42] Zheng, H.; Yang, Y. T.; Shi, G. H., Reformulation of dynamic crack propagation using the numerical manifold method, Eng Anal Boundary Elem, 105, 279-295 (2019) · Zbl 07063077
[43] Chen, Z.; Brannon, R., An evaluation of the material point method, SAND Report (2002), SAND2002-0482, (February 2002)
[44] Yang, Y. T.; Zheng, H., A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis, Eng Fract Mech, 162, 51-75 (2016)
[45] Le, Q.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput Mech, 61, 1-20 (2017)
[46] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput Struct, 83, 1526-1535 (2005)
[47] Dipasquale, D.; Zaccariotto, M.; Galvanetto, U., Crack propagation with adaptive grid refinement in 2D peridynamics, Int J Fract, 190, 1-22 (2014)
[48] Chiou, Y. J.; Lee, Y. M.; Tsay, R. J., Mixed mode fracture propagation by manifold method, Int J Fract, 114, 327-347 (2004)
[49] Ramulu, M.; Kobayashi, A., Mechanics of crack curving and branching—a dynamic fracture analysis, Dynamic fracture: Springer, 61-75 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.