zbMATH — the first resource for mathematics

Peridynamic Petrov-Galerkin method: a generalization of the peridynamic theory of correspondence materials. (English) Zbl 1441.74016
Summary: The Peridynamic Petrov-Galerkin (PPG) method is a meshfree approach based on the peridynamic integro-differential form of the momentum equation. The spurious oscillations in the common peridynamic correspondence formulation are investigated. They occur due to an inadmissible linearized mapping of the family deformation field. This leads to a generalized correspondence formulation, which contains the common formulation as a special case. It is based on the weak form of the peridynamic momentum equation. Test and trial function requirements are examined which ensure an exact imposition of Dirichlet and Neumann boundary conditions and Weighted Least Square (WLS) shape functions as well as Local Maximum Entropy (LME) approximants are utilized to examine the PPG Method. A consistent linearization is provided, which can also be used to speed up common implicit peridynamic correspondence codes. It is used in an implicit quasistatic framework to investigate the impact of different shape function combinations. Test cases show that low-energy modes can be prevented by the PPG Method and highlight the fast convergence and stability.

74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[2] Silling, S. A., Dynamic fracture modeling with a meshfree peridynamic code, (Computational Fluid and Solid Mechanics 2003 (2003), Elsevier), 641-644
[3] Javili, A.; Morasata, R.; Oterkus, E.; Oterkus, S., Peridynamics review, Math. Mech. Solids (2018)
[4] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 2, 151-184 (2007) · Zbl 1120.74003
[5] Warren, T. L.; Silling, S. A.; Askari, A.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids Struct., 46, 5, 1186-1195 (2009) · Zbl 1236.74012
[6] Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 6, 1251-1264 (2014) · Zbl 1398.74452
[7] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Internat. J. Numer. Methods Engrg., 38, 10, 1655-1679 (1995) · Zbl 0840.73078
[8] Ganzenmüller, G. C.; Hiermaier, S.; May, M., On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics, Comput. Struct., 150, 71-78 (2015)
[9] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[10] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 3, 375-389 (1977) · Zbl 0421.76032
[11] Monaghan, J. J., SPH without a tensile instability, J. Comput. Phys., 159, 2, 290-311 (2000) · Zbl 0980.76065
[12] Silling, Stewart A., Introduction to peridynamics, (Handbook of Peridynamic Modeling (2016), Chapman and Hall/CRC), 63-98
[13] Foster, John T., Constitutive modeling in peridynamics, (Handbook of Peridynamic Modeling (2016), Chapman and Hall/CRC), 181-216
[14] Littlewood, D. J., Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, (ASME 2010 International Mechanical Engineering Congress and Exposition (2010), American Society of Mechanical Engineers), 209-217
[15] Breitenfeld, M. S.; Geubelle, P. H.; Weckner, O.; Silling, S. A., Non-ordinary state-based peridynamic analysis of stationary crack problems, Comput. Methods Appl. Mech. Engrg., 272, 233-250 (2014) · Zbl 1296.74099
[16] Silling, S. A., Stability of peridynamic correspondence material models and their particle discretizations, Comput. Methods Appl. Mech. Engrg., 322, 42-57 (2017)
[17] Wu, C. T.; Ren, B., A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process, Comput. Methods Appl. Mech. Engrg., 291, 197-215 (2015) · Zbl 1423.74067
[18] Yaghoobi, A.; Chorzepa, M. G., Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics, Comput. Struct., 188, 63-79 (2017)
[19] Gu, X.; Madenci, E.; Zhang, Q., Revisit of non-ordinary state-based peridynamics, Eng. Fract. Mech. (2017)
[20] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput. Methods Appl. Mech. Engrg., 304, 408-451 (2016) · Zbl 1425.74043
[21] Chowdhury, S. R.; Roy, P.; Roy, D.; Reddy, J. N., A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications, Comput. Methods Appl. Mech. Engrg., 346, 530-549 (2019)
[22] Madenci, E.; Oterkus, E., Peridynamic Theory and its Applications (2016), Springer · Zbl 1295.74001
[23] Wriggers, P., Nonlinear Finite Element Methods (2008), Springer Science & Business Media · Zbl 1153.74001
[24] Krongauz, Y.; Belytschko, T., Consistent pseudo-derivatives in meshless methods, Comput. Methods Appl. Mech. Engrg., 146, 3-4, 371-386 (1997) · Zbl 0894.73156
[25] Lancaster, P.; Salkauskas, K., Curve and Surface Fitting: An Introduction (1986), Academic Press · Zbl 0649.65012
[26] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., 65, 13, 2167-2202 (2006) · Zbl 1146.74048
[27] Weißenfels, C.; Wriggers, P., Stabilization algorithm for the optimal transportation meshfree approximation scheme, Comput. Methods Appl. Mech. Engrg., 329, 421-443 (2018)
[28] Korelc, J.; Wriggers, P., Automation of Finite Element Methods (2016), Springer · Zbl 1367.74001
[29] Brothers, M. D.; Foster, J. T.; Millwater, H. R., A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code, Comput. Methods Appl. Mech. Engrg., 279, 247-267 (2014) · Zbl 1423.74953
[30] Littlewood, D. J., Roadmap for peridynamic software implementationSAND Report (2015), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM and Livermore, CA
[31] Kadapa, C.; Dettmer, W. G.; Perić, D., Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly incompressible materials, Comput. Methods Appl. Mech. Engrg., 305, 241-270 (2016) · Zbl 1425.74470
[32] Ganzenmüller, G. C., An hourglass control algorithm for Lagrangian smooth particle hydrodynamics, Comput. Methods Appl. Mech. Engrg., 286, 87-106 (2015) · Zbl 1423.74948
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.