×

zbMATH — the first resource for mathematics

Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. (English) Zbl 1442.74031
Summary: The peridynamic correspondence material model (PD CMM), generally regarded as a non-ordinary state-based peridynamic (NOSB PD) model, is attractive because of its capability to incorporate existing constitutive relations for material models. This study focuses on the mitigation of the numerical oscillations in the NOSB PD model. It compares the similarities and differences of smoothed particle hydrodynamics (SPH), corrected-SPH (CSPH), reproducing kernel particle method (RKPM), gradient-RKPM (G-RKPM) and NOSB PD based on their deformation gradient tensor and motion equations in the kernel integral form and their completeness and computational complexity. Inspired by the comparison and the peridynamic differential operator (PDDO), this study introduces a higher-order representation of the nonlocal deformation gradient and the force density vector by including the effect of higher-order terms in the Taylor series expansion (TSE) in order to improve the numerical accuracy and reduce the numerical oscillations. The numerical oscillations possibly arise from (1) the non-unique mapping between deformation states and force states via converting the point-associated variables into the bond force vector in each bond within a horizon, and (2) the violation of kinematic constraint condition for each bond under an arbitrary deformation state due to the point-associated nonlocal deformation gradient tensor. Therefore, a bond-associated higher-order NOSB PD model is adopted and numerically demonstrated to be effective in improving the accuracy and completely removing the oscillations. The bond-associated force vector state eliminates the concern of non-unique mapping from a deformation state to a force state. Also, the two bond-associated force vectors in a bond are equal and opposite, but not parallel to the bond direction. It can be viewed as a combination of the bond-based PD and the original NOSB PD. Finally, an implicit solver for both higher-order NOSB PD and bond-associated higher-order NOSB PD is presented for the solution of governing equations.

MSC:
74A70 Peridynamics
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[2] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 2, 151-184 (2007) · Zbl 1120.74003
[3] Silling, S. A.; Lehoucq, R. B., Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 10, 73-168 (2010)
[4] Silling, S. A., Origin and effect of nonlocality in a composite, J. Mech. Mater. Struct., 9, 2, 245-258 (2014)
[5] Madenci, E.; Oterkus, E., Peridynamic Theory and its Applications (2014), Springer New York · Zbl 1295.74001
[6] (Bobaru, F.; Foster, J. T.; Geubelle, P. H.; Silling, S. A., Handbook of Peridynamic Modeling (2016), CRC Press) · Zbl 1351.74001
[7] Gerstle, W. H., Introduction to Practical Peridynamics: Computational Solid Mechanics Without Stress and Strain (2015), World Scientific Publishing Company
[8] Tong, Q.; Li, S., Multiscale coupling of molecular dynamics and peridynamics, J. Mech. Phys. Solids, 95, 169-187 (2016)
[9] Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T., Dual-horizon peridynamics, Internat. J. Numer. Methods Engrg., 108, 12, 1451-1476 (2016)
[10] Javili, A.; Morasata, R.; Oterkus, E.; Oterkus, S., Peridynamics review, Math. Mech. Solids (2018), 1081286518803411
[11] Diehl, P.; Prudhomme, S.; Lévesque, M., A review of benchmark experiments for the validation of peridynamics models, J. Peridynamics Nonlocal Model., 1-22 (2019)
[12] Gu, X.; Zhang, Q.; Madenci, E., Review of peridynamics for multi-physics coupling modeling, Adv. Mech., 49, 1, 576-598 (2019)
[13] Gu, X.; Zhang, Q.; Huang, D.; Yv, Y., Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics, Eng. Fract. Mech., 160, 124-137 (2016)
[14] Gu, X.; Zhang, Q.; Xia, X., Voronoi-based peridynamics and cracking analysis with adaptive refinement, Internat. J. Numer. Methods Engrg., 112, 13, 2087-2109 (2017)
[15] Chakraborty, S.; Shaw, A., A pseudo-spring based fracture model for SPH simulation of impact dynamics, Int. J. Impact Eng., 58, 84-95 (2013)
[16] Ray, R.; Deb, K.; Shaw, A., Pseudo-spring smoothed particle hydrodynamics (SPH) based computational model for slope failure, Eng. Anal. Bound. Elem., 101, 139-148 (2019) · Zbl 07034721
[17] Islam, M. R.; Peng, C., A total Lagrangian SPH method for modelling damage and failure in solids, Int. J. Mech. Sci., 157-158 (2019)
[18] Silling, S. A., Stability of peridynamic correspondence material models and their particle discretizations, Comput. Methods Appl. Mech. Engrg., 322, 42-57 (2017) · Zbl 1439.74017
[19] Warren, T. L.; Silling, S. A.; Askari, A.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids Struct., 46, 5, 1186-1195 (2009) · Zbl 1236.74012
[20] Gu, X.; Madenci, E.; Zhang, Q., Revisit of non-ordinary state-based peridynamics, Eng. Fract. Mech., 190, 31-52 (2018)
[21] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 03, 493-540 (2013) · Zbl 1266.26020
[22] Wang, L.; Wang, J., On the invariance of governing equations of current nonlocal theories of elasticity under coordinate transformation and displacement gauge change, J. Elasticity, 1-10 (2019)
[23] Bergel, G. L.; Li, S., The total and updated Lagrangian formulations of state-based peridynamics, Comput. Mech., 58, 2, 351-370 (2016) · Zbl 1398.74303
[24] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput. Methods Appl. Mech. Engrg., 304, 408-451 (2016) · Zbl 1425.74043
[25] Madenci, E.; Barut, A.; Dorduncu, M., Peridynamic Differential Operator for Numerical Analysis (2019), Springer
[26] Rabczuk, T.; Ren, H.; Zhuang, X., A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem, Comput. Mater. Continua, 59, 1, 31-55 (2019)
[27] Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 1251-1264 (2014) · Zbl 1398.74452
[28] Ganzenmüller, G. C.; Hiermaier, S.; May, M., On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics, Comput. Struct., 150, 71-78 (2014)
[29] Seleson, P.; Du, Q.; Parks, M. L., On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models, Comput. Methods Appl. Mech. Engrg., 311, 698-722 (2016) · Zbl 1439.74044
[30] Ren, B.; Fan, H.; Bergel, G. L.; Regueiro, R. A.; Lai, X.; Li, S., A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves, Comput. Mech., 55, 2, 287-302 (2015) · Zbl 1398.74395
[31] Fan, H.; Li, S., A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads, Comput. Methods Appl. Mech. Engrg., 318, 349-381 (2017) · Zbl 1439.74187
[32] Wang, J.; Zhang, X., Modified Particle Method with integral Navier-Stokes formulation for incompressible flows, J. Comput. Phys., 366, 1-13 (2018) · Zbl 1406.76074
[33] Wang, J.; Zhang, X., Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity, Comput. Methods Appl. Mech. Engrg., 346, 312-331 (2019) · Zbl 1440.76126
[34] Pasetto, M.; Leng, Y.; Chen, J. S.; Foster, J. T.; Seleson, P., A reproducing kernel enhanced approach for peridynamic solutions, Comput. Methods Appl. Mech. Engrg., 340, 1044-1078 (2018) · Zbl 1440.74478
[35] Madenci, E.; Dorduncu, M.; Barut, A.; Futch, M., Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator, Numer. Methods Partial Differential Equations, 33, 5, 1726-1753 (2017) · Zbl 1375.65124
[36] Wang, H.; Oterkus, E.; Oterkus, S., Predicting fracture evolution during lithiation process using peridynamics, Eng. Fract. Mech., 192, 176-191 (2018)
[37] Dorduncu, M., Stress analysis of laminated composite beams using refined zigzag theory and peridynamic differential operator, Compos. Struct., 218, 193-203 (2019)
[38] Shojaei, A.; Galvanetto, U.; Rabczuk, T.; Jenabi, A.; Zaccariotto, M., A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains, Comput. Methods Appl. Mech. Engrg., 343, 100-126 (2019) · Zbl 1440.65157
[39] Bazazzadeh, S.; Shojaei, A.; Zaccariotto, M.; Galvanetto, U., Application of the peridynamic differential operator to the solution of sloshing problems in tanks, Eng. Comput., 36, 1, 45-83 (2019)
[40] Gao, Y.; Oterkus, S., Nonlocal numerical simulation of low Reynolds number laminar fluid motion by using peridynamic differential operator, Ocean Eng., 179, 135-158 (2019)
[41] Gu, X.; Zhang, Q.; Madenci, E., Refined bond-based peridynamics for thermal diffusion, Eng. Comput. (2019)
[42] Tu, Q.; Li, S., An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids, J. Comput. Phys., 348, 493-513 (2017) · Zbl 1380.76127
[43] Wang, J.; Zhang, X., Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity, Comput. Methods Appl. Mech. Engrg., 346, 312-331 (2019) · Zbl 1440.76126
[44] Ren, H.; Zhuang, X., A nonlocal formulation for weakly compressible fluid, (International Conference on Advances in Computational Mechanics (2017), Springer: Springer Singapore), 835-850
[45] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smoothed particle hydrodynamics stability analysis, J. Comput. Phys., 116, 1, 123-134 (1995) · Zbl 0818.76071
[46] Bonet, J.; Kulasegaram, S., Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods, Internat. J. Numer. Methods Engrg., 52, 11, 1203-1220 (2001) · Zbl 1112.74562
[47] Huerta, A.; Vidal, Y.; Bonet, J., Updated Lagrangian formulation for corrected smooth particle hydrodynamics, Int. J. Comput. Methods, 3, 04, 383-399 (2006) · Zbl 1198.76107
[48] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1035-1063 (2004) · Zbl 1060.74672
[49] Littlewood, D. J., A nonlocal approach to modeling crack nucleation in AA 7075-t651, (ASME 2011 International Mechanical Engineering Congress and Exposition (2011), American Society of Mechanical Engineers), 567-576
[50] Breitenfeld, M. S., Quasi-Static Non-Ordinary State-Based Peridynamics for the Modeling of 3D Fracture (2014), The University of Illinois at Urbana-Champaign
[51] Li, P.; Hao, Z. M.; Zhen, W. Q., A stabilized non-ordinary state-based peridynamic model, Comput. Methods Appl. Mech. Engrg., 339, 262-280 (2018) · Zbl 1440.74028
[52] Yaghoobi, A.; Chorzepa, M. G., Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics, Comput. Struct., 188, 63-79 (2017)
[53] Queiruga, A. F.; Moridis, G., Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems, Comput. Methods Appl. Mech. Engrg., 322, 97-122 (2017) · Zbl 1439.74028
[54] Du, Q.; Tian, X. C., Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling, J. Appl. Math., 78, 3, 1536-1552 (2018) · Zbl 1394.45002
[55] Wu, C. T.; Ren, B., A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process, Comput. Methods Appl. Mech. Engrg., 291, 197-215 (2015) · Zbl 1423.74067
[56] Luo, J.; Sundararaghavan, V., Stress-point method for stabilizing zero-energy modes in non-ordinary state-based peridynamics, Int. J. Solids Struct., 150, 197-207 (2018)
[57] Chowdhury, S. R.; Roy, P.; Roy, D.; Reddy, J. N., A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications, Comput. Methods Appl. Mech. Engrg., 346, 530-549 (2019) · Zbl 1440.74036
[58] Breitzman, T.; Dayal, K., Bond-level deformation gradients and energy averaging in peridynamics, J. Mech. Phys. Solids, 110, 192-204 (2018)
[59] Chen, H., Bond-associated deformation gradients for peridynamic correspondence model, Mech. Res. Commun., 90, 34-41 (2018)
[60] Chen, H.; Spencer, B. W., Peridynamic bond-associated correspondence model: Stability and convergence properties, Internat. J. Numer. Methods Engrg., 117, 6, 713-727 (2019)
[61] Ren, H.; Zhuang, X.; Rabczuk, T., Dual-horizon peridynamics: A stable solution to varying horizons, Comput. Methods Appl. Mech. Engrg., 318, 762-782 (2017) · Zbl 1439.74030
[62] Madenci, E.; Dorduncu, M.; Phan, N.; Gu, X., Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization, Eng. Fract. Mech., 218, 106613 (2019)
[63] Tupek, M. R., Extension of the Peridynamic Theory of Solids for the Simulation of Materials under Extreme Loadings (2014), Massachusetts Institute of Technology
[64] De Vuyst, T.; Vignjevic, R., Total Lagrangian SPH modelling of necking and fracture in electromagnetically driven rings, Int. J. Fract., 180, 1, 53-70 (2013)
[65] Lee, C. H.; Gil, A. J.; Ghavamian, A.; Bonet, J., A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics, Comput. Methods Appl. Mech. Engrg., 344, 209-250 (2019) · Zbl 1440.74467
[66] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 1, 543-574 (1992)
[67] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 8, 1703-1759 (2005)
[68] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[69] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Internat. J. Numer. Methods Engrg., 47, 6, 1189-1214 (2000) · Zbl 0964.76071
[70] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Internat. J. Numer. Methods Engrg., 43, 5, 785-819 (1998) · Zbl 0939.74076
[71] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[72] Aluru, N. R., A point collocation method based on reproducing kernel approximations, Internat. J. Numer. Methods Engrg., 47, 6, 1083-1121 (2000) · Zbl 0960.74078
[73] Bonet, J.; Lok, T. S., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Engrg., 180, 1-2, 97-115 (1999) · Zbl 0962.76075
[74] Zhan, L.; Peng, C.; Zhang, B.; Wu, W., A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction, J. Fluids Struct., 86, 329-353 (2019)
[75] Chi, S. W.; Chen, J. S.; Hu, H. Y.; Yang, J. P., A gradient reproducing kernel collocation method for boundary value problems, Internat. J. Numer. Methods Engrg., 93, 13, 1381-1402 (2013) · Zbl 1352.65562
[76] Gu, X.; Zhang, Q.; Madenci, E., Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal, Eng. Fract. Mech., 218, 106568 (2019)
[77] Zhu, Q. Z.; Ni, T., Peridynamic formulations enriched with bond rotation effects, Internat. J. Engrg. Sci., 121, 118-129 (2017) · Zbl 1423.74072
[78] Wang, Y.; Zhou, X.; Wang, Y.; Shou, Y., A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids, Int. J. Solids Struct., 134, 89-115 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.