×

Next-to-leading order unitarity fits in two-Higgs-doublet models with soft \(\mathbb Z_{2}\) breaking. (English) Zbl 1390.81012

Summary: We fit the next-to-leading order unitarity conditions to the Two-Higgs-Doublet model with a softly broken \(\mathbb Z_{2}\) symmetry. In doing so, we alleviate the existing uncertainty on how to treat higher order corrections to quartic couplings of its Higgs potential. A simplified approach to implementing the next-to-leading order unitarity conditions is presented. These new bounds are then combined with all other relevant constraints, including the complete set of LHC Run I data. The upper 95% bounds we find are 4.2 on the absolute values of the quartic couplings, and 235 GeV (100 GeV) for the mass degeneracies between the heavy Higgs particles in the type I (type II) scenario. In type II, we exclude an unbroken \(\mathbb Z_{2}\) symmetry with a probability of 95%. All fits are performed using the open-source code HEPfit.

MSC:

81-08 Computational methods for problems pertaining to quantum theory

Software:

BAT; HDECAY; HIGLU; HEPfit; SusHi
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at\( \sqrt{s}=7 \)and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett.114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
[4] Degrassi, G.; etal., Higgs mass and vacuum stability in the standard model at NNLO, JHEP, 08, 098, (2012) · doi:10.1007/JHEP08(2012)098
[5] Buttazzo, D.; etal., Investigating the near-criticality of the Higgs boson, JHEP, 12, 089, (2013) · doi:10.1007/JHEP12(2013)089
[6] Barbieri, R.; Giudice, GF, Upper bounds on supersymmetric particle masses, Nucl. Phys., B 306, 63, (1988) · doi:10.1016/0550-3213(88)90171-X
[7] M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Singapore (2004) [INSPIRE].
[8] H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006). · Zbl 1243.81012
[9] S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys.18 (1998) 1 [Adv. Ser. Direct. High Energy Phys.21 (2010) 1] [hep-ph/9709356] [INSPIRE].
[10] Burdman, G.; Chacko, Z.; Harnik, R.; Lima, L.; Verhaaren, CB, Colorless top partners, a 125 gev Higgs and the limits on naturalness, Phys. Rev., D 91, 055007, (2015)
[11] Burdman, G.; Chacko, Z.; Goh, H-S; Harnik, R.; Krenke, CA, The quirky collider signals of folded supersymmetry, Phys. Rev., D 78, 075028, (2008)
[12] G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP02 (2007) 009 [hep-ph/0609152] [INSPIRE].
[13] Z. Chacko, H.-S. Goh and R. Harnik, A twin Higgs model from left-right symmetry, JHEP01 (2006) 108 [hep-ph/0512088] [INSPIRE].
[14] Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett.96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
[15] G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys.913 (2016) pp.1-316 [arXiv:1506.01961] [INSPIRE]. · Zbl 1326.81006
[16] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
[17] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at\( \sqrt{s}=7 \)and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
[18] Lee, TD, A theory of spontaneous T violation, Phys. Rev., D 8, 1226, (1973)
[19] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
[20] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept.516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
[21] A.E. Carcamo Hernandez, R. Martinez and J.A. Rodriguez, Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type-III, Eur. Phys. J.C 50 (2007) 935 [hep-ph/0606190] [INSPIRE].
[22] Chen, C-Y; Dawson, S., Exploring two Higgs doublet models through Higgs production, Phys. Rev., D 87, 055016, (2013)
[23] Chiang, C-W; Yagyu, K., Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z_{2} symmetry, JHEP, 07, 160, (2013) · doi:10.1007/JHEP07(2013)160
[24] B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP06 (2013) 094 [Erratum ibid.09 (2013) 110] [arXiv:1304.0028] [INSPIRE].
[25] A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCthe story so far, arXiv:1304.5225 [INSPIRE].
[26] Coleppa, B.; Kling, F.; Su, S., Constraining type II 2HDM in light of LHC Higgs searches, JHEP, 01, 161, (2014)
[27] Eberhardt, O.; Nierste, U.; Wiebusch, M., Status of the two-Higgs-doublet model of type-II, JHEP, 07, 118, (2013) · doi:10.1007/JHEP07(2013)118
[28] Bélanger, G.; Dumont, B.; Ellwanger, U.; Gunion, JF; Kraml, S., Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev., D 88, 075008, (2013)
[29] Bhattacharyya, G.; Das, D.; Pal, PB; Rebelo, MN, Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry, JHEP, 10, 081, (2013) · doi:10.1007/JHEP10(2013)081
[30] Chang, S.; Kang, SK; Lee, J-P; Lee, KY; Park, SC; Song, J., Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP, 09, 101, (2014) · doi:10.1007/JHEP09(2014)101
[31] Cheung, K.; Lee, JS; Tseng, P-Y, Higgcision in the two-Higgs doublet models, JHEP, 01, 085, (2014) · doi:10.1007/JHEP01(2014)085
[32] Celis, A.; Ilisie, V.; Pich, A., Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP, 12, 095, (2013) · doi:10.1007/JHEP12(2013)095
[33] Wang, L.; Han, X-F, Status of the aligned two-Higgs-doublet model confronted with the Higgs data, JHEP, 04, 128, (2014) · doi:10.1007/JHEP04(2014)128
[34] Baglio, J.; Eberhardt, O.; Nierste, U.; Wiebusch, M., Benchmarks for Higgs pair production and heavy Higgs boson searches in the two-Higgs-doublet model of type II, Phys. Rev., D 90, 015008, (2014)
[35] Inoue, S.; Ramsey-Musolf, MJ; Zhang, Y., CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev., D 89, 115023, (2014)
[36] Dumont, B.; Gunion, JF; Jiang, Y.; Kraml, S., Constraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal, Phys. Rev., D 90, 035021, (2014)
[37] Kanemura, S.; Tsumura, K.; Yagyu, K.; Yokoya, H., Fingerprinting nonminimal Higgs sectors, Phys. Rev., D 90, 075001, (2014)
[38] P.M. Ferreira, R. Guedes, J.F. Gunion, H.E. Haber, M.O.P. Sampaio and R. Santos, The CP-conserving 2HDM after the 8 TeV run, arXiv:1407.4396 [INSPIRE].
[39] P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP12 (2014) 024 [Erratum ibid.11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
[40] Broggio, A.; Chun, EJ; Passera, M.; Patel, KM; Vempati, SK, Limiting two-Higgs-doublet models, JHEP, 11, 058, (2014) · doi:10.1007/JHEP11(2014)058
[41] B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Addendum toconstraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal”, arXiv:1409.4088 [INSPIRE].
[42] Bernon, J.; Gunion, JF; Jiang, Y.; Kraml, S., Light Higgs bosons in two-Higgs-doublet models, Phys. Rev., D 91, 075019, (2015)
[43] Chen, C-Y; Dawson, S.; Zhang, Y., Complementarity of LHC and EDMs for exploring Higgs CP-violation, JHEP, 06, 056, (2015) · doi:10.1007/JHEP06(2015)056
[44] Chowdhury, D.; Eberhardt, O., Global fits of the two-loop renormalized two-Higgs-doublet model with soft Z_{2} breaking, JHEP, 11, 052, (2015) · doi:10.1007/JHEP11(2015)052
[45] Craig, N.; D’Eramo, F.; Draper, P.; Thomas, S.; Zhang, H., The hunt for the rest of the Higgs bosons, JHEP, 06, 137, (2015) · doi:10.1007/JHEP06(2015)137
[46] Bernon, J.; Gunion, JF; Haber, HE; Jiang, Y.; Kraml, S., Scrutinizing the alignment limit in two-Higgs-doublet models: m_{h} = 125 gev, Phys. Rev., D 92, 075004, (2015)
[47] J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m_{\(H\)} = 125 GeV, Phys. Rev.D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
[48] Lee, BW; Quigg, C.; Thacker, HB, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett., 38, 883, (1977) · doi:10.1103/PhysRevLett.38.883
[49] Lee, BW; Quigg, C.; Thacker, HB, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev., D 16, 1519, (1977)
[50] Casalbuoni, R.; Dominici, D.; Gatto, R.; Giunti, C., Strong interacting two doublet and doublet singlet Higgs models, Phys. Lett., B 178, 235, (1986) · doi:10.1016/0370-2693(86)91502-9
[51] Maalampi, J.; Sirkka, J.; Vilja, I., Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett., B 265, 371, (1991) · doi:10.1016/0370-2693(91)90068-2
[52] S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett.B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
[53] A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett.B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
[54] I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev.D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
[55] J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J.C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].
[56] Haber, HE; O’Neil, D., Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev., D 83, 055017, (2011)
[57] Grinstein, B.; Murphy, CW; Uttayarat, P., One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken Z_{2} symmetry, JHEP, 06, 070, (2016) · doi:10.1007/JHEP06(2016)070
[58] L. Durand, J.M. Johnson and J.L. Lopez, Perturbative unitarity and high-energy W_{\(L\)}\^{}{±}, Z_{\(L\)}, H scattering. One loop corrections and the Higgs boson coupling, Phys. Rev.D 45 (1992) 3112 [INSPIRE].
[59] P.N. Maher, L. Durand and K. Riesselmann, Two loop renormalization constants and high-energy 2 → 2 scattering amplitudes in the Higgs sector of the Standard Model, Phys. Rev.D 48 (1993) 1061 [Erratum ibid.D 52 (1995) 553] [hep-ph/9303233] [INSPIRE].
[60] L. Durand, P.N. Maher and K. Riesselmann, Two loop unitarity constraints on the Higgs boson coupling, Phys. Rev.D 48 (1993) 1084 [hep-ph/9303234] [INSPIRE].
[61] U. Nierste and K. Riesselmann, Higgs sector renormalization group in the MS and OMS scheme: the breakdown of perturbation theory for a heavy Higgs, Phys. Rev.D 53 (1996) 6638 [hep-ph/9511407] [INSPIRE].
[62] Delgado, A.; Nardini, G.; Quirós, M., A light supersymmetric Higgs sector hidden by a standard model-like Higgs, JHEP, 07, 054, (2013) · doi:10.1007/JHEP07(2013)054
[63] N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
[64] Carena, M.; Low, I.; Shah, NR; Wagner, CEM, Impersonating the standard model Higgs boson: alignment without decoupling, JHEP, 04, 015, (2014) · doi:10.1007/JHEP04(2014)015
[65] Deshpande, NG; Ma, E., Pattern of symmetry breaking with two Higgs doublets, Phys. Rev., D 18, 2574, (1978)
[66] Barroso, A.; Ferreira, PM; Ivanov, IP; Santos, R., Metastability bounds on the two Higgs doublet model, JHEP, 06, 045, (2013) · doi:10.1007/JHEP06(2013)045
[67] H.E. Haber, Introductory low-energy supersymmetry, in Theoretical Advanced Study Institute (TASI 92): from black holes and strings to particles, Boulder U.S.A. June 3-28 1992 [hep-ph/9306207] [INSPIRE].
[68] C.Q. Geng and J.N. Ng, Charged Higgs effect in\( {B}_d^0-{\overline{B}}_d^0 \)mixing,\( K\ →\ π ν\ \overline{ν} \)decay and rare decays of B mesons, Phys. Rev.D 38 (1988) 2857 [Erratum ibid.D 41 (1990) 1715] [INSPIRE].
[69] Deschamps, O.; Descotes-Genon, S.; Monteil, S.; Niess, V.; T’Jampens, S.; Tisserand, V., The two Higgs doublet of type II facing flavour physics data, Phys. Rev., D 82, 073012, (2010)
[70] Misiak, M.; etal., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett., 114, 221801, (2015) · doi:10.1103/PhysRevLett.114.221801
[71] J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, arXiv:1608.01509 [INSPIRE]. · Zbl 1390.81016
[72] LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
[73] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE]. · Zbl 0938.81515
[74] Gunion, JF; Haber, HE; Kane, GL; Dawson, S., The Higgs hunter’s guide, Front. Phys., 80, 1, (2000)
[75] LHC Higgs Cross section Working Group collaboration, LHC Higgs Cross Section Working Group webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG, (2015).
[76] M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
[77] Harlander, RV; Liebler, S.; Mantler, H., Sushi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun., 184, 1605, (2013) · Zbl 1297.81163 · doi:10.1016/j.cpc.2013.02.006
[78] Alwall, J.; etal., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP, 07, 079, (2014) · doi:10.1007/JHEP07(2014)079
[79] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
[80] HEPfit collaboration, HEPfit: a code for the combination of indirect and direct constraints on high energy physics models, http://hepfit.roma1.infn.it, in preparation.
[81] Caldwell, A.; Kollar, D.; Kroninger, K., BAT: the Bayesian analysis toolkit, Comput. Phys. Commun., 180, 2197, (2009) · Zbl 1197.62002 · doi:10.1016/j.cpc.2009.06.026
[82] Branco, GC; Lavoura, L.; Silva, JP, CP violation, Int. Ser. Monogr. Phys., 103, 1, (1999)
[83] S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev.D 72 (2005) 035004 [Erratum ibid.D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
[84] ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric Standard Model in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, JHEP11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
[85] CMS collaboration, Search for additional neutral Higgs bosons decaying to a pair of tau leptons in pp collisions at\( \sqrt{s}=7 \)and 8 TeV, CMS-PAS-HIG-14-029, CERN, Geneva Switzerland (2014).
[86] ATLAS collaboration, Search for scalar diphoton resonances in the mass range 65\(-\)600 GeV with the ATLAS detector in pp collision data at\( \sqrt{s}=8 \)TeV, Phys. Rev. Lett.113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
[87] CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at\( \sqrt{s}=8 \)TeV, Phys. Lett.B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
[88] CMS collaboration, Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks, JHEP11 (2015) 071 [arXiv:1506.08329] [INSPIRE].
[89] ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, JHEP01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
[90] ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at\( \sqrt{s}=8 \)TeV in pp collision data with the ATLAS detector, Eur. Phys. J.C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
[91] CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
[92] ATLAS collaboration, Searches for Higgs boson pair production in the hhbbτ τ, γγW W\^{}{∗}, γγbb, bbbb channels with the ATLAS detector, Phys. Rev.D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].
[93] CMS collaboration, Model independent search for Higgs boson pair production in the\( b\overline{b}τ +τ - \)final state, CMS-PAS-HIG-15-013, CERN, Geneva Switzerland (2015).
[94] CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev.D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].
[95] CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett.B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
[96] CMS collaboration, Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with hτ τ , Phys. Lett.B 755 (2016) 217 [arXiv:1510.01181] [INSPIRE].
[97] CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in\( {ℓ}^{+}{ℓ}^{-}b\overline{b} \)final states, Phys. Lett.B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
[98] ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Phys. Lett.B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
[99] CMS collaboration, Search for scalar resonances in the 200\(-\)1200 GeV mass range decaying into a Z and a photon in pp collisions at\( \sqrt{s}=8 \)TeV, CMS-PAS-HIG-16-014, CERN, Geneva Switzerland (2016).
[100] Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.