×

Mathematical and computational modelling of skin biophysics: a review. (English) Zbl 1404.92022

Summary: The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.

MSC:

92C10 Biomechanics
92C05 Biophysics
92-02 Research exposition (monographs, survey articles) pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Burns T, Breathnach S, Cox N, Griffiths C.(2004) Rook’s textbook of dermatology, 7th edn. Oxford, UK: Blackwell Science.
[2] Silver FH, Siperko LM, Seehra GP. (2003) Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9, 3-23. (doi:10.1034/j.1600-0846.2003.00358.x) · doi:10.1034/j.1600-0846.2003.00358.x
[3] Jablonski NG. (2006) Skin: a natural history. Berkeley, CA: University of California Press.
[4] Belytschko T, Liu WK, Moran B. (2000) Nonlinear finite elements for continua and structures. Oxford, UK: Wiley.
[5] Forrester AIJ. (2010) Black-box calibration for complex systems simulation. Phil. Trans. R. Soc. A 368, 3567-3579. (doi:10.1098/rsta.2010.0051) · doi:10.1098/rsta.2010.0051
[6] Jor JWY, Parker MD, Taberner AJ, Nash MP, Nielsen PMF. (2013) Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539-556. (doi:10.1002/wsbm.1228) · doi:10.1002/wsbm.1228
[7] Li W. (2015) Modelling methods for in vitro biomechanical properties of the skin: a review. Biomed. Eng. Lett. 5, 241-250. (doi:10.1007/s13534-015-0201-3) · doi:10.1007/s13534-015-0201-3
[8] Fung YC.(1981) Biomechanics: mechanical properties of living tissues. New York, NY: Springer.
[9] Humphrey JD. (2003) Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3-46. (doi:10.1098/rspa.2002.1060) · Zbl 1116.74385 · doi:10.1098/rspa.2002.1060
[10] Lanir Y. (2016) Multi-scale structural modeling of soft tissues mechanics and mechanobiology. J. Elast.1-42. (doi:10.1007/s10659-016-9607-0) · Zbl 1374.74097 · doi:10.1007/s10659-016-9607-0
[11] Shimizu H. (2007) Shimizu’s textbook of dermatology. Hokkaido, Japan: Hokkaido University Press - Nakayama Shoten Publishers.
[12] Buganza Tepole A, Kuhl E. (2016) Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput. Methods Biomech. Biomed. Eng. 19, 13-30. (doi:10.1080/10255842.2014.980821) · doi:10.1080/10255842.2014.980821
[13] Kvistedal YA, Nielsen PMF. (2009) Estimating material parameters of human skin in vivo. Biomech. Model Mechanobiol. 8, 1-8. (doi:10.1007/s10237-007-0112-z) · doi:10.1007/s10237-007-0112-z
[14] Lanir Y. (1987) Skin mechanics. In Handbook of bioengineering (eds Skalak R, Chien S). New York, NY: McGraw-Hill. · Zbl 0458.92006
[15] Vierkötter A, Krutmann J. (2012) Environmental influences on skin aging and ethnic-specific manifestations. Dermato-endocrinology 4, 227-231. (doi:10.4161/derm.19858) · doi:10.4161/derm.19858
[16] Silver FH, Freeman JW, DeVore D. (2001) Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18-23. (doi:10.1034/j.1600-0846.2001.007001018.x) · doi:10.1034/j.1600-0846.2001.007001018.x
[17] Limbert G. (2014) Chapter 4: State-of-the-art constitutive models of skin biomechanics. In Computational biophysics of the skin (ed. Querleux B), pp. 95-131. Singapore: Pan Stanford Publishing Pte. Ltd.
[18] Marieb EN, Hoehn K. (2010) Human anatomy and physiology, 8th edn. San Francisco, CA: Pearson International Edition.
[19] Chan LS. (1997) Human skin basement membrane in health and autoimmune diseases. Front. Biosci. 2, 343-352. (doi:10.2741/A196) · doi:10.2741/A196
[20] Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G. (2015) A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. Mech. Behav. Biomed. Mater. 49, 197-219. (doi:10.1016/j.jmbbm.2015.05.010) · doi:10.1016/j.jmbbm.2015.05.010
[21] Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G. (2017) Skin microstructure is a key contributor to its friction behaviour. Tribology Lett. 65, 12. (doi:10.1007/s11249-016-0794-4) · doi:10.1007/s11249-016-0794-4
[22] Dandekar K, Raju BI, Srinivasan MA. (2003) 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J. Biomech. Eng. 125, 682-691. (doi:10.1115/1.1613673) · doi:10.1115/1.1613673
[23] Xu F, Lu T. (2011) Introduction to skin biothermomechanics and thermal pain. Heidelberg, Germany: Springer.
[24] Biniek K, Levi K, Dauskardt RH. (2012) Solar UV radiation reduces the barrier function of human skin. Proc. Natl Acad. Sci USA 109, 17 111-17 116. (doi:10.1073/pnas.1206851109) · doi:10.1073/pnas.1206851109
[25] Wu KS, van Osdol WW, Dauskardt RH. (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27, 785-795. (doi:10.1016/j.biomaterials.2005.06.019) · doi:10.1016/j.biomaterials.2005.06.019
[26] Ciarletta P, Ben Amar M. (2012) Papillary networks in the dermal-epidermal junction of skin: a biomechanical model. Mech. Res. Commun. 42, 68-76. (doi:10.1016/j.mechrescom.2011.12.001) · doi:10.1016/j.mechrescom.2011.12.001
[27] Burgeson RE, Christiano AM. (1997) The dermal-epidermal junction. Curr. Opin. Cell Biol. 9, 651-658. (doi:10.1016/S0955-0674(97)80118-4) · doi:10.1016/S0955-0674(97)80118-4
[28] Ribeiro JF, dos Anjos EHM, Mello MLS, de Campos Vidal B. (2013) Skin collagen fiber molecular order: a pattern of distributional fiber orientation as assessed by optical anisotropy and image analysis. PLoS ONE 8, e54724. (doi:10.1371/journal.pone.0054724) · doi:10.1371/journal.pone.0054724
[29] Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. (2002) Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B 357, 121-132. (doi:10.1098/rstb.2001.1022) · doi:10.1098/rstb.2001.1022
[30] Sherratt MJ. (2013) Age-related tissue stiffening: cause and effect. Adv. Wound Care 2, 11-17. (doi:10.1089/wound.2011.0328) · doi:10.1089/wound.2011.0328
[31] Langer K. (1861)Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiserlichen Academie der Wissenschaften Abt 44.
[32] Langer K. (1978) On the anatomy and physiology of the skin: I. The cleavability of the cutis. Br. J. Plastic Surg. 31, 3-8. (doi:10.1016/0007-1226(78)90003-6) · doi:10.1016/0007-1226(78)90003-6
[33] Langer K. (1978) On the anatomy and physiology of the skin: II. Skin tension (with 1 figure). Br. J. Plastic Surg. 31, 93-106. (doi:10.1016/S0007-1226(78)90109-1) · doi:10.1016/S0007-1226(78)90109-1
[34] Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M. (2011) Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139-148. (doi:10.1016/j.jmbbm.2011.08.016) · doi:10.1016/j.jmbbm.2011.08.016
[35] Alexander H, Cook TH. (1977) Accounting for natural tension in the mechanical testing of human skin. J. Invest. Dermatol. 69, 310-314. (doi:10.1111/1523-1747.ep12507731) · doi:10.1111/1523-1747.ep12507731
[36] Flynn C, Taberner AJ, Nielsen PMF, Fels S. (2013) Simulating the three-dimensional deformation of in vivo facial skin. J. Mech. Behav. Biomed. Mater. 28, 484-494. (doi:10.1016/j.jmbbm.2013.03.004) · doi:10.1016/j.jmbbm.2013.03.004
[37] Flynn C, Stavness I, Lloyd J, Fels S. (2013) A finite element model of the face including an orthotropic skin model under in vivo tension. Comput. Methods Biomech. Biomed. Eng. 18, 571-582. (doi:10.1080/10255842.2013.820720) · doi:10.1080/10255842.2013.820720
[38] Deroy C, Destrade M, Mc Alinden A, Ní Annaidh A. (2016) Non-invasive evaluation of skin tension lines with elastic waves. Skin Res. Technol. 23, 326-335 (doi:10.1111/srt.12339) · doi:10.1111/srt.12339
[39] Rosado C, Antunes F, Barbosa R, Fernando R, Estudante M, Silva HN, Rodrigues LM. (2016) About the in vivo quantitation of skin anisotropy. Skin Res. Technol. 23, 429-436 (doi:10.1111/srt.12353) · doi:10.1111/srt.12353
[40] Wan Abas WAB. (1994) Biaxial tension test of human skin in vivo. Biomed. Mater. Eng. 4, 473-486.
[41] Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Maurini C, Otténio M, Saccomandi G. (2012) Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Ann. Biomed. Eng. 40, 1666-1678. (doi:10.1007/s10439-012-0542-3) · doi:10.1007/s10439-012-0542-3
[42] Ottenio M, Tran D, Annaidh AN, Gilchrist MD, Bruyère K. (2015) Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J. Mech. Behav. Biomed. Mater. 41, 241-250. (doi:10.1016/j.jmbbm.2014.10.006) · doi:10.1016/j.jmbbm.2014.10.006
[43] Kvistedal YA, Nielsen PMF. (2004)Investigating stress-strain properties of in-vivo human skin using multiaxial loading experiments and finite element modeling. In Proc. of the 26th Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, 1–4 September, vol. 7, pp. 5096-5099. Piscataway, NJ: IEEE.
[44] Batisse D, Bazin R, Baldeweck T, Querleux B, Lévêque JL. (2002) Influence of age on the wrinkling capacities of skin. Skin Res. Technol. 8, 148-154. (doi:10.1034/j.1600-0846.2002.10308.x) · doi:10.1034/j.1600-0846.2002.10308.x
[45] Delalleau A, Josse G, Lagarde JM, Zahouani H, Bergheau JM. (2006) Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J. Biomech. 39, 1603-1610. (doi:10.1016/j.jbiomech.2005.05.001) · doi:10.1016/j.jbiomech.2005.05.001
[46] Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM, Gall Y, Berson M. (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6, 214-221. (doi:10.1034/j.1600-0846.2000.006004214.x) · doi:10.1034/j.1600-0846.2000.006004214.x
[47] Dobrev HQ. (2000) Use of Cutometer to assess epidermal hydration. Skin Res. Technol. 6, 239-244. (doi:10.1034/j.1600-0846.2000.006004239.x) · doi:10.1034/j.1600-0846.2000.006004239.x
[48] Hendriks FM, Brokken D, van Eemeren J, Oomens CWJ, Baaijens FPT, Horsten J. (2003) A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9, 274-283. (doi:10.1034/j.1600-0846.2003.00019.x) · doi:10.1034/j.1600-0846.2003.00019.x
[49] Weickenmeier J, Jabareen M, Mazza E. (2015) Suction based mechanical characterization of superficial facial soft tissues. J. Biomech. 48, 4279-4286. (doi:10.1016/j.jbiomech.2015.10.039) · doi:10.1016/j.jbiomech.2015.10.039
[50] Tonge TK, Atlan LS, Voo LM, Nguyen TD. (2013) Full-field bulge test for planar anisotropic tissues: part I—experimental methods applied to human skin tissue. Acta Biomater. 9, 5913-5925. (doi:10.1016/j.actbio.2012.11.035) · doi:10.1016/j.actbio.2012.11.035
[51] Geerligs M, Oomens CWJ, Ackermans PAJ, Baaijens FPT, Peters GWM. (2011) Linear shear response of the upper skin layers. Biorheology 48, 229-245. (doi:10.3233/BIR-2011-0590) · doi:10.3233/BIR-2011-0590
[52] Geerligs M, van Breemen LCA, Peters GWM, Ackermans PAJ, Baaijens FPT, Oomens CWJ. (2011) In vitro indentation to determine the mechanical properties of epidermis. J. Biomech. 44, 1176-1181. (doi:10.1016/j.jbiomech.2011.01.015) · doi:10.1016/j.jbiomech.2011.01.015
[53] Lamers E, van Kempen THS, Baaijens FPT, Peters GWM, Oomens CWJ. (2013) Large amplitude oscillatory shear properties of human skin. J. Mech. Behav. Biomed. Mater. 28, 462-470. (doi:10.1016/j.jmbbm.2013.01.024) · doi:10.1016/j.jmbbm.2013.01.024
[54] Lanir Y, Fung YC. (1974) Two-dimensional mechanical properties of rabbit skin—II: experimental results. J. Biomech. 7, 171-182. (doi:10.1016/0021-9290(74)90058-X) · doi:10.1016/0021-9290(74)90058-X
[55] Wong WLE, Joyce TJ, Goh KL. (2016) Resolving the viscoelasticity and anisotropy dependence of the mechanical properties of skin from a porcine model. Biomech. Model. Mechanobiol. 15, 433-446. (doi:10.1007/s10237-015-0700-2) · doi:10.1007/s10237-015-0700-2
[56] Veronda DR, Westmann R. (1970) Mechanical characterization of skin—finite deformations. J. Biomech. 3, 111-124. (doi:10.1016/0021-9290(70)90055-2) · doi:10.1016/0021-9290(70)90055-2
[57] Marino M. (2016) Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies. Biomech. Model. Mechanobiol. 15, 133-154. (doi:10.1007/s10237-015-0707-8) · doi:10.1007/s10237-015-0707-8
[58] Spencer AJM. (1984) Constitutive theory for strongly anisotropic solids. In Continuum theory of the mechanics of fibre-reinforced composites (ed. Spencer AJM), pp. 1-32. Vienna, Austria: Springer.
[59] Šolinc U, Korelc J. (2015) A simple way to improved formulation of FE2 analysis. Comput. Mech. 56, 905-915. (doi:10.1007/s00466-015-1208-4) · Zbl 1329.65279 · doi:10.1007/s00466-015-1208-4
[60] Saeb S, Steinmann P, Javili A. (2016) Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68, 050801. (doi:10.1115/1.4034024) · doi:10.1115/1.4034024
[61] Buganza Tepole A, Gart M, Gosain AK, Kuhl E. (2014) Characterization of living skin using multi-view stereo and isogeometric analysis. Acta Biomater. 10, 4822-4831. (doi:10.1016/j.actbio.2014.06.037) · doi:10.1016/j.actbio.2014.06.037
[62] Buganza Tepole A, Gosain AK, Kuhl E. (2012) Stretching skin: the physiological limit and beyond. Int. J. Non-Linear Mech. 47, 938-949. (doi:10.1016/j.ijnonlinmec.2011.07.006) · doi:10.1016/j.ijnonlinmec.2011.07.006
[63] Buganza Tepole A, Gosain AK, Kuhl E. (2014) Computational modeling of skin: Using stress profiles as predictor for tissue necrosis in reconstructive surgery. Comput. Struct. 143, 32-39. (doi:10.1016/j.compstruc.2014.07.004) · doi:10.1016/j.compstruc.2014.07.004
[64] Buganza Tepole A, Ploch CJ, Wong J, Gosain AK, Kuhl E. (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solids 59, 2177-2190. (doi:10.1016/j.jmps.2011.05.004) · Zbl 1270.74137 · doi:10.1016/j.jmps.2011.05.004
[65] Zöllner A, Buganza Tepole A, Gosain AK, Kuhl E. (2012) Growing skin: tissue expansion in pediatric forehead reconstruction. Biomech. Model Mechanobiol. 11, 855-867. (doi:10.1007/s10237-011-0357-4) · doi:10.1007/s10237-011-0357-4
[66] Zöllner AM, Buganza Tepole A, Kuhl E. (2012) On the biomechanics and mechanobiology of growing skin. J. Theor. Biol. 297, 166-175. (doi:10.1016/j.jtbi.2011.12.022) · Zbl 1336.92010 · doi:10.1016/j.jtbi.2011.12.022
[67] Zöllner AM, Holland MA, Honda KS, Gosain AK, Kuhl E. (2013) Growth on demand: reviewing the mechanobiology of stretched skin. J. Mech. Behav. Biomed. Mater. 28, 495-509. (doi:10.1016/j.jmbbm.2013.03.018) · doi:10.1016/j.jmbbm.2013.03.018
[68] Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G. (2017) Implications of multi-asperity contact for shear stress distribution in the viable epidermis—an image-based finite element study. Biotribology (doi:10.1016/j.biotri.2017.04.001) · doi:10.1016/j.biotri.2017.04.001
[69] Young PG, Beresford-West TBH, Coward SRL, Notarberardino B, Walker B, Abdul-Aziz A. (2008) An efficient approach to converting three-dimensional image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155-3173. (doi:10.1098/rsta.2008.0090) · doi:10.1098/rsta.2008.0090
[70] Limbert G, van Lierde C, Muraru OL, Walboomers XF, Frank M, Hansson S, Middleton J, Jaecques S. (2010) Trabecular bone strains around a dental implant and associated micromotions–a micro-CT-based three-dimensional finite element study. J. Biomech. 43, 1251-1261. (doi:10.1016/j.jbiomech.2010.01.003) · doi:10.1016/j.jbiomech.2010.01.003
[71] Linder-Ganz E, Shabshin N, Itzchak Y, Gefen A. (2007) Assessment of mechanical conditions in sub-dermal tissues during sitting: A combined experimental-MRI and finite element approach. J. Biomech. 40, 1443-1454. (doi:10.1016/j.jbiomech.2006.06.020) · doi:10.1016/j.jbiomech.2006.06.020
[72] Limbert G, Bryan R, Cotton R, Young P, Hall-Stoodley L, Kathju S, Stoodley P. (2013) On the mechanics of bacterial biofilms on non-dissolvable surgical sutures: a laser scanning confocal microscopy-based finite element study. Acta Biomater. 9, 6641-6652. (doi:10.1016/j.actbio.2013.01.017) · doi:10.1016/j.actbio.2013.01.017
[73] Gerhardt LC, Strässle V, Lenz A, Spencer ND, Derler S. (2008) Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317-1328. (doi:10.1098/rsif.2008.0034) · doi:10.1098/rsif.2008.0034
[74] Adams MJ, Briscoe BJ, Johnson SA. (2007) Friction and lubrication of human skin. Tribology Lett. 26, 239-253. (doi:10.1007/s11249-007-9206-0) · doi:10.1007/s11249-007-9206-0
[75] Derler S, Gerhardt LC, Lenz A, Bertaux E, Hadad M. (2009) Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribology Int. 42, 1565-1574. (doi:10.1016/j.triboint.2008.11.009) · doi:10.1016/j.triboint.2008.11.009
[76] Kwiatkowska M, Franklin SE, Hendriks CP, Kwiatkowski K. (2009) Friction and deformation behaviour of human skin. Wear 267, 1264-1273. (doi:10.1016/j.wear.2008.12.030) · doi:10.1016/j.wear.2008.12.030
[77] Wolfram LJ. (1983) Friction of skin. J. Soc. Cosmet. Chem. 34, 465-476.
[78] Stupkiewicz S, Lewandowski MJ, Lengiewicz J. (2014) Micromechanical analysis of friction anisotropy in rough elastic contacts. Int. J. Solids Struct. 51, 3931-3943. (doi:10.1016/j.ijsolstr.2014.07.013) · doi:10.1016/j.ijsolstr.2014.07.013
[79] Goldstein B, Sanders J. (1998) Skin response to repetitive mechanical stress: a new experimental model in pig. Arch. Phys. Med. Rehabil. 79, 265-272. (doi:10.1016/S0003-9993(98)90005-3) · doi:10.1016/S0003-9993(98)90005-3
[80] Weickenmeier J, Jabareen M. (2014) Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient. Int. J. Numer. Methods Biomed. Eng. 30, 1238-1262. (doi:10.1002/cnm.2654) · doi:10.1002/cnm.2654
[81] Li W, Luo XY. (2016) An invariant-based damage model for human and animal skins. Ann. Biomed. Eng. 44, 3109-3122. (doi:10.1007/s10439-016-1603-9) · doi:10.1007/s10439-016-1603-9
[82] McBride A, Bargmann S, Pond D, Limbert G. (2016) Thermoelastic modelling of the skin at finite deformations. J. Therm. Biol 62, 201-209. (doi:10.1016/j.jtherbio.2016.06.017) · doi:10.1016/j.jtherbio.2016.06.017
[83] Vermolen FJ, Gefen A, Dunlop JWC. (2012) In vitro ‘wound’ healing: experimentally based phenomenological modeling. Adv. Eng. Mater. 14, 76-88. (doi:10.1002/adem.201180080) · doi:10.1002/adem.201180080
[84] Sherratt JA, Dallon JC. (2002) Theoretical models of wound healing: past successes and future challenges. C. R. Biol. 325, 557-564. (doi:10.1016/S1631-0691(02)01464-6) · doi:10.1016/S1631-0691(02)01464-6
[85] Buganza Tepole A. (2017) Computational systems mechanobiology of wound healing. Comput. Methods Appl. Mech. Eng. 314, 46-70. (doi:10.1016/j.cma.2016.04.034) · doi:10.1016/j.cma.2016.04.034
[86] Marsden JE, Hughes TJR. (1994) Mathematical foundations of elasticity. New York, NY: Dover.
[87] Holzapfel GA. (2000) Nonlinear solid mechanics. A continuum approach for engineering. Chichester, UK: John Wiley & Sons.
[88] Boehler . (1978) Lois de comportement anisotrope des milieux continus. J. Mécanique 17, 153-190. · Zbl 0401.73005
[89] Limbert G, Taylor M. (2002) On the constitutive modeling of biological soft connective tissues. A general theoretical framework and tensors of elasticity for strongly anisotropic fiber-reinforced composites at finite strain. Int. J. Solids Struct. 39, 2343-2358. (doi:10.1016/S0020-7683(02)00084-7) · Zbl 1033.74032 · doi:10.1016/S0020-7683(02)00084-7
[90] Spencer AJM. (1992) Continuum theory of the mechanics of fibre-reinforced composites. New York, NY: Springer.
[91] Criscione JC, Humphrey JD, Douglas AS, Hunter WC. (2000) An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445-2465. (doi:10.1016/S0022-5096(00)00023-5) · Zbl 0983.74012 · doi:10.1016/S0022-5096(00)00023-5
[92] Criscione JC, Douglas AS, Hunter WC. (2001) Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871-897. (doi:10.1016/S0022-5096(00)00047-8) · Zbl 0980.74012 · doi:10.1016/S0022-5096(00)00047-8
[93] Lanir Y. (1983) Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1-22. (doi:10.1016/0021-9290(83)90041-6) · doi:10.1016/0021-9290(83)90041-6
[94] Meijer R, Douven LFA, Oomens CWJ. (1999) Characterisation of anisotropic and non-linear behaviour of human skin in vivo. Comput. Methods Biomech. Biomed. Eng. 2, 13-27. (doi:10.1080/10255849908907975) · doi:10.1080/10255849908907975
[95] Jor JWY, Nash MP, Nielsen PMF, Hunter PJ. (2011) Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomech. Model. Mechanobiol. 10, 767-778. (doi:10.1007/s10237-010-0272-0) · doi:10.1007/s10237-010-0272-0
[96] Holzapfel GA, Ogden RW. (2016) On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons. J. Elast., 1-20. (doi:10.1007/s10659-016-9605-2) · Zbl 1373.74020 · doi:10.1007/s10659-016-9605-2
[97] Gasser TC, Ogden RW, Holzapfel GA. (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3, 15-35. (doi:10.1098/rsif.2005.0073) · doi:10.1098/rsif.2005.0073
[98] Arruda EM, Boyce MC. (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. J. Mech. Phys. Solids 41, 389-412. (doi:10.1016/0022-5096(93)90013-6) · Zbl 1355.74020 · doi:10.1016/0022-5096(93)90013-6
[99] Bischoff JE, Arruda EA, Grosh K. (2002) A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570-579. (doi:10.1115/1.1485754) · Zbl 1110.74344 · doi:10.1115/1.1485754
[100] Bischoff JE, Arruda EM, Grosh K. (2000) Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J. Biomech. 33, 645-652. (doi:10.1016/S0021-9290(00)00018-X) · doi:10.1016/S0021-9290(00)00018-X
[101] Flynn C, McCormack BAO. (2008) Finite element modelling of forearm skin wrinkling. Skin Res. Technol. 14, 261-269. (doi:10.1111/j.1600-0846.2008.00289.x) · doi:10.1111/j.1600-0846.2008.00289.x
[102] Flynn C, McCormack BAO. (2008) A simplified model of scar contraction. J. Biomech. 41, 1582-1589. (doi:10.1016/j.jbiomech.2008.02.024) · doi:10.1016/j.jbiomech.2008.02.024
[103] Flynn CO, McCormack BAO. (2010) Simulating the wrinkling and aging of skin with a multi-layer finite element model. J. Biomech. 43, 442-448. (doi:10.1016/j.jbiomech.2009.10.007) · doi:10.1016/j.jbiomech.2009.10.007
[104] Kuhl E, Garikipati K, Arruda E, Grosh K. (2005) Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Phys. Solids 53, 1552-1573. (doi:10.1016/j.jmps.2005.03.002) · Zbl 1120.74635 · doi:10.1016/j.jmps.2005.03.002
[105] Limbert G, Middleton J. (2005)A polyconvex anisotropic strain energy function. Application to soft tissue mechanics. In ASME Summer Bioengineering Conf., Vail, CO, 22–26 June. Piscataway, NJ: IEEE.
[106] Itskov M, Ehret AE, Mavrilas D. (2006) A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech. Model Mechanobiol. 5, 17-26. (doi:10.1007/s10237-005-0006-x) · doi:10.1007/s10237-005-0006-x
[107] Itskov M, Aksel N. (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833-3848. (doi:10.1016/j.ijsolstr.2004.02.027) · Zbl 1079.74516 · doi:10.1016/j.ijsolstr.2004.02.027
[108] Holzapfel GA, Gasser TC, Ogden RW. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1-48. (doi:10.1023/A:1010835316564) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[109] Tonge TK, Voo LM, Nguyen TD. (2013) Full-field bulge test for planar anisotropic tissues: Part II - A thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches. Acta Biomater. 9, 5926-5942. (doi:10.1016/j.actbio.2012.11.034) · doi:10.1016/j.actbio.2012.11.034
[110] Flynn C, Rubin MB, Nielsen P. (2011) A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles. Int. J. Numer. Methods Biomed. Eng. 27, 1793-1811. (doi:10.1002/cnm.1440) · Zbl 1242.92008 · doi:10.1002/cnm.1440
[111] Ankersen J, Birkbeck AE, Thomson RD, Vanezis P. (1999) Puncture resistance and tensile strength of skin simulants. Proc. Inst. Mech. Eng. H J. Eng. Med. 213, 493-501. (doi:10.1243/0954411991535103) · doi:10.1243/0954411991535103
[112] Flynn C, Rubin MB. (2012) An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66-76. (doi:10.1016/j.ijengsci.2012.04.006) · Zbl 1423.74611 · doi:10.1016/j.ijengsci.2012.04.006
[113] Limbert G. (2011) A mesostructurally-based anisotropic continuum model for biological soft tissues–Decoupled invariant formulation. J. Mech. Behav. Biomed. Mater. 4, 1637-1657. (doi:10.1016/j.jmbbm.2011.07.016) · doi:10.1016/j.jmbbm.2011.07.016
[114] Bischoff JE, Arruda EM, Grosh K. (2002) Finite element simulations of orthotropic hyperelasticity. Finite Elem. Anal. Des. 38, 983-998. (doi:10.1016/S0168-874X(02)00089-6) · Zbl 1051.74041 · doi:10.1016/S0168-874X(02)00089-6
[115] Lu J, Zhang L. (2005) Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42, 6015-6031. (doi:10.1016/j.ijsolstr.2005.04.014) · Zbl 1119.74319 · doi:10.1016/j.ijsolstr.2005.04.014
[116] Kratky O, Porod G. (1949) Röntgenuntersuchungen gelöster Fadenmoleküle. Rec. Trav. Chim. Pays-Bas. Belg. 68, 1106-1122. (doi:10.1002/recl.19490681203) · doi:10.1002/recl.19490681203
[117] Korelc J, Šolinc U, Wriggers P. (2010) An improved EAS brick element for finite deformation. Comput. Mech. 46, 641-659. (doi:10.1007/s00466-010-0506-0) · Zbl 1358.74059 · doi:10.1007/s00466-010-0506-0
[118] Gautieri A, Vesentini S, Redaelli A, Buehler MJ. (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomic scale up. Nano Lett. 11, 757-766. (doi:10.1021/nl103943u) · doi:10.1021/nl103943u
[119] Sun YL, Luo ZP, Fertala A, An KN. (2002) Direct quantification of the flexibility of type I collagen monomer. Biomech. Biophys. Res. Commun. 295, 382-386. (doi:10.1016/S0006-291X(02)00685-X) · doi:10.1016/S0006-291X(02)00685-X
[120] Groves RB, Coulman SA, Birchall JC, Evans SL. (2013) An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167-180. (doi:10.1016/j.jmbbm.2012.10.021) · doi:10.1016/j.jmbbm.2012.10.021
[121] Weiss JA, Maker BN, Govindjee S. (1996) Finite element implementation of incompressible transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107-128. (doi:10.1016/0045-7825(96)01035-3) · Zbl 0893.73071 · doi:10.1016/0045-7825(96)01035-3
[122] Barbenel JC, Evans JH. (1973) The time-dependent mechanical properties of skin. J. Invest. Dermatol. 69, 165-172.
[123] Pereira JM, Mansour JM, Davis BR. (1990) Analysis of shear-wave propagation in skin; application to an experimental procedure. J. Biomech. 23, 745-751. (doi:10.1016/0021-9290(90)90021-T) · doi:10.1016/0021-9290(90)90021-T
[124] Pereira JM, Mansour JM, Davis BR. (1991) Dynamic measurement of the viscoelastic properties of skin. J. Biomech. 24, 157-162. (doi:10.1016/0021-9290(91)90360-Y) · doi:10.1016/0021-9290(91)90360-Y
[125] Lanir Y. (1979) The rheological behavior of the skin: experimental results and a structural model. Biorheology 16, 191-202.
[126] Wu JZ, Cutlip RG, Welcome D, Dong RG. (2006) Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. Bio-Med. Mater. Eng. 16, 53-66.
[127] Khatyr F, Imberdis C, Vescovo P, Varchon D, Lagarde JM. (2004) Model of the viscoelastic behaviour of skin in vivo and study of anisotropy. Skin Res. Technol. 10, 96-103. (doi:10.1111/j.1600-0846.2004.00057.x) · doi:10.1111/j.1600-0846.2004.00057.x
[128] Boyer G, Laquieze L, Le Bot A, Laquieze S, Zahouani H. (2009) Dynamic indentation on human skin in vivo: ageing effects. Skin Res. Technol. 15, 55-67. (doi:10.1111/j.1600-0846.2008.00324.x) · doi:10.1111/j.1600-0846.2008.00324.x
[129] Boyer G, Zahouani H, Le BA, Laquieze L. (2007)In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. In 2007 Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August, vols 1-16, pp. 4584-4587. Piscataway, NJ: IEEE.
[130] Goh KL, Listrat A, Béchet D. (2014) Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies. J. Biomed. Nanotechnol. 10, 2464-2507. (doi:10.1166/jbn.2014.1960) · doi:10.1166/jbn.2014.1960
[131] Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM. (2003) Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. J. Biomech. 36, 1555-1569. (doi:10.1016/S0021-9290(03)00133-7) · doi:10.1016/S0021-9290(03)00133-7
[132] Bischoff JE, Arruda EM, Grosh K. (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model Mechanobiol. 3, 56-65. (doi:10.1007/s10237-004-0049-4) · doi:10.1007/s10237-004-0049-4
[133] Kearney SP, Khan A, Dai Z, Royston TJ. (2015) Dynamic viscoelastic models of human skin using optical elastography. Phys. Med. Biol. 60, 6975-6990. (doi:10.1088/0031-9155/60/17/6975) · doi:10.1088/0031-9155/60/17/6975
[134] Lokshin O, Lanir Y. (2009) Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J. Biomech. Eng. 131, 031009. (doi:10.1115/1.3049479) · doi:10.1115/1.3049479
[135] Lokshin O, Lanir Y. (2009) Micro and macro rheology of planar tissues. Biomaterials 30, 3118-3127. (doi:10.1016/j.biomaterials.2009.02.039) · doi:10.1016/j.biomaterials.2009.02.039
[136] Fung YC. (1973) Biorheology of soft tissues. Biorheology 10, 139-155.
[137] Ehret A. (2011)Generalised concepts for constitutive modelling of soft biological tissues. PhD thesis, RWTH Aachen University, pp. 1-230.
[138] Bischoff J. (2006) Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models. Ann. Biomed. Eng. 34, 1164-1172. (doi:10.1007/s10439-006-9124-6) · doi:10.1007/s10439-006-9124-6
[139] Pioletti DP, Rakotomanana LR, Benvenuti JF, Leyvraz PF. (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31, 753-757. (doi:10.1016/S0021-9290(98)00077-3) · doi:10.1016/S0021-9290(98)00077-3
[140] Coleman BD, Noll W. (1961) Foundations of linear viscoelasticity. Rev. Mod. Phys. 3, 239-249. (doi:10.1103/RevModPhys.33.239) · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[141] Limbert G. (2004) Development of an advanced computational model for the simulation of damage to human skin, pp. 1-95. Cardiff, UK: Welsh Development Agency (Technology and Innovation Division) - FIRST Numerics Ltd.
[142] Limbert G, Middleton J. (2004) A transversely isotropic viscohyperelastic material: application to the modelling of biological soft connective tissues. Int. J. Solids Struct. 41, 4237-4260. (doi:10.1016/j.ijsolstr.2004.02.057) · Zbl 1079.74520 · doi:10.1016/j.ijsolstr.2004.02.057
[143] Limbert G, Middleton J. (2005)An anisotropic viscohyperelastic constitutive model of the posterior cruciate ligament suitable for high loading-rate situations. In IUTAM Symp. on Impact Biomechanics: from Fundamental Insights to Applications, Dublin, Ireland, pp. 1–8. Dordrecht, The Netherlands: Springer.
[144] Limbert G, Middleton J. (2006) A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28, 99-113. (doi:10.1016/j.medengphy.2005.03.003) · doi:10.1016/j.medengphy.2005.03.003
[145] Reese S, Govindjee S. (1998) A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455-3482. (doi:10.1016/S0020-7683(97)00217-5) · Zbl 0918.73028 · doi:10.1016/S0020-7683(97)00217-5
[146] Lubarda VA. (2004) Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity and biomechanics. Appl. Mech. Rev. 57, 95-108. (doi:10.1115/1.1591000) · doi:10.1115/1.1591000
[147] Vassoler JM, Reips L, Fancello EA. (2012) A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691-1706. (doi:10.1002/nme.3308) · Zbl 1242.74011 · doi:10.1002/nme.3308
[148] Nguyen TD, Jones RE, Boyce BL. (2007) Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int. J. Solids Struct. 44, 8366-8389. (doi:10.1016/j.ijsolstr.2007.06.020) · Zbl 1167.74381 · doi:10.1016/j.ijsolstr.2007.06.020
[149] Nedjar B. (2007) An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 196, 1745-1756. (doi:10.1016/j.cma.2006.09.009) · Zbl 1173.74322 · doi:10.1016/j.cma.2006.09.009
[150] Flynn C, Rubin MB. (2014) An anisotropic discrete fiber model with dissipation for soft biological tissues. Mech. Mater. 68, 217-227. (doi:10.1016/j.mechmat.2013.07.009) · doi:10.1016/j.mechmat.2013.07.009
[151] Hollenstein M, Jabareen M, Rubin MB. (2013) Modeling a smooth elastic-inelastic transition with a strongly objective numerical integrator needing no iteration. Comput. Mech. 52, 649-667. (doi:10.1007/s00466-013-0838-7) · Zbl 1282.74105 · doi:10.1007/s00466-013-0838-7
[152] Holzapfel GA, Gasser TC. (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190, 4379-4403. (doi:10.1016/S0045-7825(00)00323-6) · doi:10.1016/S0045-7825(00)00323-6
[153] Pena E, Calvo B, Martinez MA, Doblare M. (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int. J. Solids Struct. 44, 760-778. (doi:10.1016/j.ijsolstr.2006.05.018) · Zbl 1176.74043 · doi:10.1016/j.ijsolstr.2006.05.018
[154] Pena E, Calvo B, Martinez MA, Doblare M. (2008) On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues. Int. J. Numer. Methods Eng. 74, 1198-1218. (doi:10.1002/nme.2212) · Zbl 1158.74425 · doi:10.1002/nme.2212
[155] Ehret AE, Itskov M, Weinhold GW. (2009) A micromechanically motivated model for the viscoelastic behaviour of soft biological tissues at large strains. Nuovo Cimento C 32, 73-80. (doi:10.1393/ncc/i2009-10334-7) · doi:10.1393/ncc/i2009-10334-7
[156] Gasser TC, Forsell C. (2011) The numerical implementation of invariant-based viscoelastic formulations at finite strains. An anisotropic model for the passive myocardium. Comput. Methods Appl. Mech. Eng. 200, 3637-3645. (doi:10.1016/j.cma.2011.08.022) · Zbl 1239.74061 · doi:10.1016/j.cma.2011.08.022
[157] Simo JC. (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153-173. (doi:10.1016/0045-7825(87)90107-1) · Zbl 0588.73082 · doi:10.1016/0045-7825(87)90107-1
[158] Kligman AM, Zheng P, Lavker RM. (1985) The anatomy and pathogenesis of wrinkles. Br. J. Dermatol. 113, 37-42. (doi:10.1111/j.1365-2133.1985.tb02042.x) · doi:10.1111/j.1365-2133.1985.tb02042.x
[159] Veijgen NK, Masen MA, van der Heide E. (2013) Variables influencing the frictional behaviour of in vivo human skin. J. Mech. Behav. Biomed. Mater. 28, 448-461. (doi:10.1016/j.jmbbm.2013.02.009) · doi:10.1016/j.jmbbm.2013.02.009
[160] Wang S, Li M, Wu J, Kim D-H, Lu N, Su Y, Kang Z, Huang Y, Rogers JA. (2012) Mechanics of epidermal electronics. J. Appl. Mech. 79, 031022. (doi:10.1115/1.4005963) · doi:10.1115/1.4005963
[161] Lejeune E, Javili A, Linder C. (2016) An algorithmic approach to multi-layer wrinkling. Extreme Mech. Lett. 7, 10-17. (doi:10.1016/j.eml.2016.02.008) · doi:10.1016/j.eml.2016.02.008
[162] Piérard GE, Uhoda I, Piérard-Franchimont C. (2004) From skin microrelief to wrinkles. An area ripe for investigation. J. Cosm. Derm. 2, 21-28. (doi:10.1111/j.1473-2130.2003.00012.x) · doi:10.1111/j.1473-2130.2003.00012.x
[163] Genzer J, Groenewold J. (2006) Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter. 2, 310-323. (doi:10.1039/b516741h) · doi:10.1039/b516741h
[164] Cerda E, Mahadevan L. (2003) Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302. (doi:10.1103/PhysRevLett.90.074302) · doi:10.1103/PhysRevLett.90.074302
[165] Biot MA. (1963) Surface instability of rubber in compression. Appl. Sci. Res. A 12, 168-182. (doi:10.1007/BF03184638) · Zbl 0121.19004 · doi:10.1007/BF03184638
[166] Biot MA. (1963) Incremental elastic coefficients of an isotropic medium in finite strain. Appl. Sci. Res. A 12, 151-167. · Zbl 0116.40904
[167] Cao Y, Hutchinson JW. (2012) Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79, 031019. (doi:10.1115/1.4005960) · doi:10.1115/1.4005960
[168] Dervaux J, Ben Amar M. (2010) Localized growth of layered tissues. IMA J. Appl. Math. 75, 571-580. (doi:10.1093/imamat/hxq023) · Zbl 1425.74322 · doi:10.1093/imamat/hxq023
[169] Taylor M, Bertoldi K, Steigmann DJ. (2014) Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. J. Mech. Phys. Solids 62, 163-180. (doi:10.1016/j.jmps.2013.09.024) · Zbl 1323.74052 · doi:10.1016/j.jmps.2013.09.024
[170] Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J. (2005) Nested self-similar wrinkling patterns in skins. Nat. Mater 4, 293-297. (doi:10.1038/nmat1342) · doi:10.1038/nmat1342
[171] Holland MA, Li B, Feng XQ, Kuhl E. (2017) Instabilities of soft films on compliant substrates. J. Mech. Phys. Solids 98, 350-365. (doi:10.1016/j.jmps.2016.09.012) · doi:10.1016/j.jmps.2016.09.012
[172] Ben Amar M, Goriely A. (2005) Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 2284-2319. (doi:10.1016/j.jmps.2005.04.008) · Zbl 1120.74336 · doi:10.1016/j.jmps.2005.04.008
[173] Ben Amar MBA, Chatelain C, Ciarletta P. (2011) Contour instabilities in early tumor growth models. Phys. Rev. Lett. 106, 148101. (doi:10.1103/PhysRevLett.106.148101). · doi:10.1103/PhysRevLett.106.148101
[174] Dervaux J, Ben Amar M. (2008) Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068101. (doi:10.1103/PhysRevLett.101.068101) · doi:10.1103/PhysRevLett.101.068101
[175] Dervaux J, Ciarletta P, Ben Amar M. (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J. Mech. Phys. Solids 57, 458-471. (doi:10.1016/j.jmps.2008.11.011) · Zbl 1170.74354 · doi:10.1016/j.jmps.2008.11.011
[176] Goriely A, Ben Amar M. (2005) Differential growth and instability in elastic shells. Phys. Rev. Lett. 94, 198 103. (doi:10.1103/PhysRevLett.94.198103) · Zbl 1120.74336 · doi:10.1103/PhysRevLett.94.198103
[177] Goriely A, Destrade M, Ben Amar M. (2006) Instabilities in elastomers and in soft tissues. Q. J. Mech. Appl. Math. 59, 615-630. (doi:10.1093/qjmam/hbl017) · Zbl 1107.74018 · doi:10.1093/qjmam/hbl017
[178] Allen HG. (1969) Chapter 8: Wrinkling and other forms of local instability. In Analysis and design of sandwich panels, pp. 156-189. New York, NY: Pergamon.
[179] Cao Y, Hutchinson JW. (2011) From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. R. Soc. A 468, 94-115. (doi:10.1098/rspa.2011.0384) · Zbl 1243.74040 · doi:10.1098/rspa.2011.0384
[180] Lejeune E, Javili A, Linder C. (2016) Understanding geometric instabilities in thin films via a multi-layer model. Soft Matter 12, 806-816. (doi:10.1039/C5SM02082D) · doi:10.1039/C5SM02082D
[181] Ciarletta P, Destrade M, Gower AL. (2013) Shear instability in skin tissue. Q. J. Mech. Appl. Math. 66, 273-288. (doi:10.1093/qimam/hbt007) · Zbl 1291.74139 · doi:10.1093/qimam/hbt007
[182] Gower AL. (2015) Connecting the material parameters of soft fibre-reinforced solids with the formation of surface wrinkles. J. Eng. Math. 95, 217-229. (doi:10.1007/s10665-014-9736-z) · Zbl 1360.74113 · doi:10.1007/s10665-014-9736-z
[183] Carfagna M, Destrade M, Gower AL, Grillo A. (2017) Oblique wrinkles. Phil. Trans. R. Soc. A 375, 20160158. (doi:10.1098/rsta.2016.0158) · Zbl 1404.74089 · doi:10.1098/rsta.2016.0158
[184] Yu B(2016) An elastic second skin. Nat. Mater. 15, 911-918. (doi:10.1038/nmat4635) · doi:10.1038/nmat4635
[185] Destrade M, Ogden RW, Sgura I, Vergori L. (2014) Straightening wrinkles. J. Mech. Phys. Solids 65, 1-11. (doi:10.1016/j.jmps.2014.01.001) · Zbl 1323.74013 · doi:10.1016/j.jmps.2014.01.001
[186] Kuwazuru O, Miyamoto K, Yoshikawa N, Imayama S. (2012) Skin wrinkling morphology changes suddenly in the early 30s. Skin Res. Technol. 18, 495-503. (doi:10.1111/j.1600-0846.2011.00598.x) · doi:10.1111/j.1600-0846.2011.00598.x
[187] Shiihara Y, Sato M, Hara Y, Iwai I, Yoshikawa N. (2014) Microrelief suppresses large wrinkling appearance: an in silico study. Skin Res. Technol. 21, 184-191. (doi:10.1111/srt.12175) · doi:10.1111/srt.12175
[188] Wong YW, Pellegrino S. (2006) Wrinkled membranes part III: numerical simulations. J. Mech. Mater. Struct. 1, 63-95. (doi:10.2140/jomms.2006.1.63) · doi:10.2140/jomms.2006.1.63
[189] Limbert G, Kuhl E. In preparation. On skin microrelief and the emergence of expression micro-wrinkles. Soft Matter.
[190] Budday S, Kuhl E, Hutchinson JW. (2015) Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95, 3208-3224. (doi:10.1080/14786435.2015.1014443) · doi:10.1080/14786435.2015.1014443
[191] de Souza Neto EA, Feng YT. (1999) On the determination of the path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’. Comput. Methods Appl. Mech. Eng. 179, 81-89. (doi:10.1016/S0045-7825(99)00042-0) · Zbl 1003.74025 · doi:10.1016/S0045-7825(99)00042-0
[192] Dortdivanlioglu B, Javili A, Linder C. (2016) Computational aspects of morphological instabilities using isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 261-279. (doi:10.1016/j.cma.2016.06.028) · doi:10.1016/j.cma.2016.06.028
[193] Chen L, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas SPA, Limbert G. (2014) Explicit finite deformation analysis of isogeometric membranes. Comput. Methods Appl. Mech. Eng. 277, 104-130. (doi:10.1016/j.cma.2014.04.015) · Zbl 1423.74525 · doi:10.1016/j.cma.2014.04.015
[194] Buganza Tepole A, Kabaria H, Bletzinger K-U, Kuhl E. (2015) Isogeometric Kirchhoff-Love shell formulations for biological membranes. Comput. Methods Appl. Mech. Eng. 293, 328-347. (doi:10.1016/j.cma.2015.05.006) · doi:10.1016/j.cma.2015.05.006
[195] Javili A, Steinmann P, Kuhl E. (2014) A novel strategy to identify the critical conditions for growth-induced instabilities. J. Mech. Behav. Biomed. Mater. 29, 20-32. (doi:10.1016/j.jmbbm.2013.08.017) · doi:10.1016/j.jmbbm.2013.08.017
[196] Barber D. (2012) Bayesian reasoning and machine learning. Cambridge, UK: Cambridge University Press. · Zbl 1267.68001
[197] Liu W, Röckner M. (2015) Stochastic partial differential equations: an introduction. 1st edn. Berlin, Germany: Springer. · Zbl 1361.60002
[198] Buehler MJ. (2006) Large-scale hierarchical molecular modeling of nanostructured biological materials. J. Comput. Theor. Nanos 3, 603-623. (doi:10.1166/jctn.2006.002) · doi:10.1166/jctn.2006.002
[199] Rim JE, Pinsky PM, van Osdol WW. (2009) Multiscale modeling framework of transdermal drug delivery. Ann. Biomed. Eng. 37, 1217-1229. (doi:10.1007/s10439-009-9678-1) · doi:10.1007/s10439-009-9678-1
[200] Bancelin S, Lynch B, Bonod-Bidaud C, Ducourthial G, Psilodimitrakopoulos S, Dokládal P, Allain J-M, Schanne-Klein M-C, Ruggiero F. · doi:10.1038/srep17635
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.