×

zbMATH — the first resource for mathematics

Improved (related-key) attacks on round-reduced KATAN-32/48/64 based on the extended boomerang framework. (English) Zbl 1346.94097
Liu, Joseph K.K. (ed.) et al., Information security and privacy. 21st Australasian conference, ACISP 2016, Melbourne, VIC, Australia, July 4–6, 2016. Proceedings. Part II. Cham: Springer (ISBN 978-3-319-40366-3/pbk; 978-3-319-40367-0/ebook). Lecture Notes in Computer Science 9723, 333-346 (2016).
Summary: The boomerang attack is one of the many extensions of the original differential attack. It has been widely applied to successfully attack many existing ciphers. In this paper, we investigate an extended version of the boomerang attack and show that it is still a very powerful tool especially in the related-key setting. A new branch-and-bound searching strategy which involves the extended boomerang framework is then introduced. We provide an improved cryptanalysis on the KATAN family (a family of hardware-oriented block ciphers proposed in CHES 2009) based on the boomerang attack. In the related-key setting, we were able to greatly improve upon the previous results to achieve the best results, namely 150 and 133 rounds by far for KATAN48/64 respectively. For KATAN32 in the related-key setting and all KATAN variants in the single-key setting, our results are the best ones in the differential setting although inferior to the meet-in-the-middle attack.
For the entire collection see [Zbl 1342.94004].
MSC:
94A60 Cryptography
Software:
KATAN; KTANTAN; SIMON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadian, Z., Rasoolzadeh, S., Salmasizadeh, M., Aref, M.R.: Automated Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN. IACR Cryptology ePrint Archive 2015 (2015)
[2] Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013) · Zbl 1327.94025 · doi:10.1007/978-3-642-35999-6_1
[3] Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002) · Zbl 1045.94512 · doi:10.1007/3-540-45661-9_1
[4] Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001) · Zbl 0981.94017 · doi:10.1007/3-540-44987-6_21
[5] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991) · Zbl 0787.94014 · doi:10.1007/3-540-38424-3_1
[6] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009) · Zbl 1267.94041 · doi:10.1007/978-3-642-10366-7_1
[7] Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: theory and practice. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011) · Zbl 1282.94034 · doi:10.1007/978-3-642-21702-9_3
[8] Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 388–404. Springer, Heidelberg (2013) · Zbl 1306.94031 · doi:10.1007/978-3-642-38348-9_24
[9] De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN – a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009) · Zbl 1290.94060 · doi:10.1007/978-3-642-04138-9_20
[10] Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 61–81. Springer, Heidelberg (2015) · Zbl 1382.94106 · doi:10.1007/978-3-662-46706-0_4
[11] Isobe, T., Sasaki, Y., Chen, J.: Related-key boomerang attacks on KATAN32/48/64. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 268–285. Springer, Heidelberg (2013) · Zbl 1316.94079 · doi:10.1007/978-3-642-39059-3_19
[12] Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 202–221. Springer, Heidelberg (2013) · Zbl 1327.94053 · doi:10.1007/978-3-642-35999-6_14
[13] Isobe, T., Shibutani, K.: Improved all-subkeys recovery attacks on FOX, KATAN and SHACAL-2 block ciphers. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 104–126. Springer, Heidelberg (2015) · Zbl 1382.94119 · doi:10.1007/978-3-662-46706-0_6
[14] Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001) · Zbl 0994.68635 · doi:10.1007/3-540-44706-7_6
[15] Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145. Springer, Heidelberg (2010) · Zbl 1253.94056 · doi:10.1007/978-3-642-17373-8_8
[16] Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 200–212. Springer, Heidelberg (2012) · Zbl 1292.94095 · doi:10.1007/978-3-642-28496-0_12
[17] Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Differential and rectangle attacks on reduced-round SHACAL-1. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 17–31. Springer, Heidelberg (2006) · Zbl 1175.94088 · doi:10.1007/11941378_3
[18] Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Related-key rectangle attack on 42-round SHACAL-2. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 85–100. Springer, Heidelberg (2006) · Zbl 1156.94367 · doi:10.1007/11836810_7
[19] Matsui, M.: On correlation between the order of S-Boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995) · Zbl 0879.94024 · doi:10.1007/BFb0053451
[20] Rasoolzadeh, S., Raddum, H.: Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN. IACR Cryptology ePrint Archive 2016 (2016) · Zbl 1436.94089
[21] Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology-CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015) · Zbl 1347.94059 · doi:10.1007/978-3-662-47989-6_5
[22] Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999) · Zbl 0942.94022 · doi:10.1007/3-540-48519-8_12
[23] Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-the-middle cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011) · Zbl 1295.94153 · doi:10.1007/978-3-642-22497-3_31
[24] Zhu, B., Gong, G.: Multidimensional meet-in-the-middle attack and its applications to KATAN32/48/64. Crypt. Commun. 6, 313–333 (2014) · Zbl 1298.94118 · doi:10.1007/s12095-014-0102-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.