×

The Stern-Gerlach phenomenon according to classical electrodynamics. (English) Zbl 1183.81016

Summary: We present a description of the Stern-Gerlach type experiments using only the concepts of classical electrodynamics and the Newton’s equations of motion. The quantization of the projections of the spin (or the projections of the magnetic dipole) is not introduced in our calculations. The main characteristic of our approach is a quantitative analysis of the motion of the magnetic atoms at the entrance of the magnetic field region. This study reveals a mechanism which modifies continuously the orientation of the magnetic dipole of the atom in a very short time interval, at the entrance of the magnetic field region. The mechanism is based on the conservation of the total energy associated with a magnetic dipole which moves in a non uniform magnetic field generated by an electromagnet. A detailed quantitative comparison with the (1922) Stern-Gerlach experiment and the didactical (1967) experiment by J.R. Zacharias is presented. We conclude, contrary to the original Stern-Gerlach statement, that the classical explanations are not ruled out by the experimental data.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P05 General and philosophical questions in quantum theory
78A35 Motion of charged particles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dechoum, K., França, H.M., Malta, C.P.: Classical aspects of Pauli–Schrödinger equation. Phys. Lett. A 93, 248 (1998) · Zbl 0941.81024
[2] Rabi, I.I., Ramsey, N.F., Schwinger, J.: Use of rotating coordinates in magnetic resonance problems. Rev. Mod. Phys. 26, 167 (1954) · Zbl 0055.43305 · doi:10.1103/RevModPhys.26.167
[3] Bohm, D, Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation. Nuovo Cimento Suppl. 1, 48 (1955) · Zbl 0064.44608 · doi:10.1007/BF02743528
[4] Schiller, R.: Quasi-classical theory of the spinning electron. Phys. Rev. 125, 1116 (1962) · Zbl 0102.21803 · doi:10.1103/PhysRev.125.1116
[5] Dewdney, C., Holland, P.R., Kyprianidis, A., Vigier, J.P.: Spin and non-locality in quantum mechanics. Nature 336, 536 (1988) · doi:10.1038/336536a0
[6] Dewdney, C., Holland, P.R., Kyprianidis, A.: What happens in a spin measurement? Phys. Lett. A 119, 259 (1986) · doi:10.1016/0375-9601(86)90144-1
[7] Holland, P.R.: The Quantum Theory of Motion. Cambridge Univ., Cambridge (1993), chapter 9 · Zbl 0811.16020
[8] Boyer, T.H.: Classical spinning magnetic dipole in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A 29, 2389 (1984) · doi:10.1103/PhysRevA.29.2389
[9] Barranco, A.V., Brunini, S.A., França, H.M.: Spin and paramagnetism in classical stochastic electrodynamics. Phys. Rev. A 39, 5492 (1989) · doi:10.1103/PhysRevA.39.5492
[10] de la Peña, L., Cetto, A.M.: In: van der Merwe, A. (ed.) The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)
[11] Marshall, T.W.: Random electrodynamics. Proc. R. Soc. Ser. A 276, 475 (1963) · Zbl 0119.44401 · doi:10.1098/rspa.1963.0220
[12] França, H.M., Santos, R.B.B.: Anomalous paramagnetic behaviour: the role of zero-point electromagnetic fluctuations. Phys. Lett. A 238, 227 (1998) · Zbl 1044.81522 · doi:10.1016/S0375-9601(97)00916-X
[13] França, H.M., Santos, R.B.B.: Resonant paramagnetic enhancement of the thermal and zero-point Nyquist noise. Phys. Lett. A 251, 100 (1999) · doi:10.1016/S0375-9601(98)00898-6
[14] Stern, O.: Z. Phys. 7, 249 (1921). See the English translation: A way towards the experimental examination of spatial quantisation in a magnetic field, Z. Phys. D 10, 114 (1988) · doi:10.1007/BF01332793
[15] Gerlach, W., Stern, O.: Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Phys. 8, 110 (1921)
[16] Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys. 9, 349 (1922) · doi:10.1007/BF01326983
[17] Taylor, J.B.: Magnetic moments of the alkali metal atoms. Phys. Rev. 28, 576 (1926). See in particular the comments concerning the width of the slits on page 580 · doi:10.1103/PhysRev.28.576
[18] Rabi, I.I.: Refraction of beams of molecules. Nature 123, 163 (1929) · JFM 55.1182.19 · doi:10.1038/123163b0
[19] Fraser, R.G.J.: Molecular Rays. Cambridge Univ. Press, London (1931). See pages 117 and 150
[20] Rabi, I.I.: Zur methode der ablenkung von molekularstrahlen. Z. Phys. 54, 190 (1929). See the Fig. 5 on page 196 · doi:10.1007/BF01339837
[21] Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975). Section 5.7 · Zbl 0997.78500
[22] Smith, K.F.: Molecular Beams. Methuen & Co Ltd., London (1955). Chapters 2 and 4 · Zbl 0066.21502
[23] French, A.P., Taylor, E.F.: An Introduction to Quantum Physics. Norton, New York (1978). Chapter 10
[24] Estermann, I., Simpson, O.C., Stern, O.: The magnetic moment of the proton. Phys. Rev. 52, 535 (1937) · doi:10.1103/PhysRev.52.535
[25] Rañada, A.F., Rañada, M.F.: The Stern–Gerlach quantum-like behaviour of a classical charged particle. J. Phys. A 12, 1419 (1979) · doi:10.1088/0305-4470/12/9/010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.