×

zbMATH — the first resource for mathematics

Solving the linear fractional programming problem in a fuzzy environment: numerical approach. (English) Zbl 07160238
Summary: The fuzzy linear fractional programming problem is an important planning tool in different areas such as engineering, business, finance, and economics. In this study, we propose the use of the \((\alpha ,r)\) acceptable optimal value for a linear fractional programming problem with fuzzy coefficients and fuzzy decision variables, as well as developing a method for computing them. To obtain acceptable \((\alpha ,r)\) optimal values, we take an \(\alpha\)-cut on the objective function and \(r\)-cut on the constraints. We then formulate an equivalent bi-objective linear fractional programming problem to calculate the upper and lower bounds of the fully fuzzy LFP problem. Using the upper and lower bounds obtained, we construct the membership functions of the optimal values numerically. We illustrate the proposed procedure using numerical and real life examples.

MSC:
90 Operations research, mathematical programming
26 Real functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stancu-Minasian, I. M., Fractional Programming: Theory, Methods and Applications (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0899.90155
[2] Isbell, J. R.; Marlow, W. H., Attrition games, Nav. Res. Logist. Q., 3, 1-99 (1956) · Zbl 0122.15405
[3] Charnes, A.; Cooper, W. W., Programming with linear fractional functions, Nav. Res. Logist. Q., 9, 181-186 (1962) · Zbl 0127.36901
[4] Bitran, G. R.; Novaes, A. G., Linear programming with a fractional objective function, Oper. Res., 21, 22-29 (1973) · Zbl 0259.90046
[5] Gilmore, P. C.; Gomory, R. E., Linear programming approach to the cutting stock problem: Part 2, Oper. Res., 11, 863-867 (1963) · Zbl 0124.36307
[6] Martos, B., Hyperbolic programming, Nav. Res. Logist. Q., 11, 135-155 (1964) · Zbl 0131.18504
[7] Swarup, K., Linear fractional functional programming, Oper. Res., 13, 1029-1036 (1965) · Zbl 0132.13802
[8] Dantzig, G. B., Linear Programming and Extension (1962), Princeton University Press: Princeton University Press Princeton, New Jersey
[9] Chadha, S. S., Fractional programming with absolute-value function, Eur. J. Oper. Res., 141, 233-238 (2002) · Zbl 0998.90077
[10] Chan, C.-T., Fractional programming with absolute-value functions: a fuzzy goal programming approach, Appl. Math. Comput., 167, 508-515 (2005) · Zbl 1079.90138
[11] Tantawy, S. F., Using feasible directions to solve linear fractional programming problems, Aust. J. Basic Appl. Sci., 1, 109-114 (2007)
[12] Tantawy, S. F., A new procedure for solving linear fractional programming problems, Math. Comput. Model., 48, 969-973 (2008) · Zbl 1156.90445
[13] Mojtaba, B.; Azmin, S.; Mansour, S., Solving linear fractional programming problems with interval coefficients in the objective function: A new approach, Appl. Math. Sci., 6, 3442-3452 (2012) · Zbl 1264.90167
[14] Bellman, R. E.; Zadeh, L. A., Decision making in a fuzzy environment, Manag. Sci., 17, 141-164 (1970) · Zbl 0224.90032
[15] Tanaka, H.; Okuda, T.; Asai, K., On fuzzy mathematical programming, J. Cybern. Syst., 3, 37-46 (1973) · Zbl 0297.90098
[16] Abo-Sinna, M. A.; Baky, I. A., Fuzzy goal programming procedure to bilevel multi objective linear fractional programming problems, Int. J. Math. Math. Sci., 2010, Article 148975 pp. (2010) · Zbl 1263.90081
[17] Baky, I. A., Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach, Appl. Math. Model., 34, 2377-2387 (2010) · Zbl 1195.90077
[18] Dutta, D.; Rao, J. R.; Tiwari, R. N., Effect of tolerance in fuzzy linear fractional programming, Fuzzy Sets Syst., 55, 133-142 (1993) · Zbl 0791.90069
[19] Li, D. F.; Chen, S., A fuzzy programming approach to fuzzy linear fractional programming with fuzzy coefficients, J. Fuzzy Math., 4, 829-834 (1996) · Zbl 0870.90104
[20] Mehlawat, M. K.; Kumar, S., A solution procedure for a linear fractional programming problem with fuzzy numbers, Adv. Intell. Soft Comput., 130, 1037-1049 (2012)
[21] Pop, B.; Stancu-Minasian, I. M., A method of solving fully fuzzified linear fractional programming problems, J. Appl. Math. Comput., 27, 227-242 (2008) · Zbl 1193.90224
[22] Veeramani, C.; Sumathi, M., Fuzzy mathematical programming approach for solving fuzzy linear programming problem, RAIRO Oper. Res., 48, 109-122 (2014) · Zbl 1293.90071
[23] Kauffmann, A.; Gupta, M. M., Introduction to Fuzzy Arithmetic: Theory and Applications (1991), Van Nostrand Reinhold: Van Nostrand Reinhold New York
[24] Zimmermann, H. J., Fuzzy Set Theory and its Applications (1985), Kluwer Academic: Kluwer Academic Boston · Zbl 0578.90095
[25] Dubois, D.; Prade, H., Ranking fuzzy number in the setting of possibility theory, Inf. Sci., 30, 183-224 (1983) · Zbl 0569.94031
[26] Wu, H. C., Duality theorems in fuzzy mathematical programming problems based on the concept of necessity, Fuzzy Sets Syst., 139, 363-377 (2003) · Zbl 1047.90082
[27] Craven, B. D., Fractional Programming (1988), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0649.90098
[28] Schaible, S., Fractional programming I:duality, Manag. Sci., 22, 658-667 (1976)
[29] Pal, B. B.; Basu, I., A goal programming method for solving fractional programming problems via dynamic programming, Optim. J. Math. Progr. Oper. Res., 35, 145-157 (1995) · Zbl 0839.90120
[30] Pal, B. B.; Moitra, B. N.; Maulik, U., A goal programming procedure for fuzzy multiobjective linear fractional programming problem, Fuzzy Sets and Systems, 139, 395-405 (2003) · Zbl 1047.90081
[31] Stanojevic, B.; Stanojevic, M., Solving method for linear fractional optimization problem with fuzzy coefficients in the objective function, Int. J. Comput. Commun Control, 8, 136-145 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.