Abad, Fatemeh Salary Pour Shari; Allahdadi, Mehdi; Nehi, Hassan Mishmast Interval linear fractional programming: optimal value range of the objective function. (English) Zbl 07291006 Comput. Appl. Math. 39, No. 4, Paper No. 261, 17 p. (2020). MSC: 90C32 90C30 PDF BibTeX XML Cite \textit{F. S. P. S. Abad} et al., Comput. Appl. Math. 39, No. 4, Paper No. 261, 17 p. (2020; Zbl 07291006) Full Text: DOI
Mostafaee, Amin; Hladík, Milan Optimal value bounds in interval fractional linear programming and revenue efficiency measuring. (English) Zbl 07252394 CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 963-981 (2020). MSC: 90B50 90C31 65G40 PDF BibTeX XML Cite \textit{A. Mostafaee} and \textit{M. Hladík}, CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 963--981 (2020; Zbl 07252394) Full Text: DOI
Nayak, Suvasis; Ojha, Akshay Kumar Solution approach to multi-objective linear fractional programming problem using parametric functions. (English) Zbl 07044882 Opsearch 56, No. 1, 174-190 (2019). MSC: 90B PDF BibTeX XML Cite \textit{S. Nayak} and \textit{A. K. Ojha}, Opsearch 56, No. 1, 174--190 (2019; Zbl 07044882) Full Text: DOI
Chinnadurai, Veeramani; Muthukumar, Sumathi Solving the linear fractional programming problem in a fuzzy environment: numerical approach. (English) Zbl 07160238 Appl. Math. Modelling 40, No. 11-12, 6148-6164 (2016). MSC: 90 26 PDF BibTeX XML Cite \textit{V. Chinnadurai} and \textit{S. Muthukumar}, Appl. Math. Modelling 40, No. 11--12, 6148--6164 (2016; Zbl 07160238) Full Text: DOI