×

Relic density and pamela events in a heavy wino dark matter model with Sommerfeld effect. (English) Zbl 1247.83289

Summary: In a wino LSP scenario the annihilation cross-section of winos gravitationally bound in galaxies can be boosted by a Sommerfeld enhancement factor which arises due to the ladder of exchanged \(W\) bosons between the initial states. The boost factor obtained can be in the range \(S \simeq 10^4\) if the mass is close to the resonance value of \(M \simeq 4\) TeV. In this paper we show that if one takes into account the Sommerfeld enhancement in the relic abundance calculation then the correct relic density is obtained for 4 TeV wino mass due to the enhanced annihilation after their kinetic decoupling. At the same time the Sommerfeld enhancement in the \(\chi \chi \to W^+ W^-\) annihilation channel is sufficient to explain the positron flux seen in PAMELA data without significantly exceeding the observed antiproton signal. We also show that \((e^-+e^+)\) and \(\gamma\)-ray signals are broadly compatible with the Fermi-LAT observations. In conclusion we show that a 4 TeV wino DM can explain the positron and antiproton fluxes observed by PAMELA and at the same time give a thermal relic abundance of CDM consistent with WMAP observations.

MSC:

83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1038/nature07942 · doi:10.1038/nature07942
[2] DOI: 10.1016/j.nuclphysb.2008.11.031 · Zbl 1194.83111 · doi:10.1016/j.nuclphysb.2008.11.031
[3] DOI: 10.1016/S0550-3213(99)00359-4 · Zbl 1068.81608 · doi:10.1016/S0550-3213(99)00359-4
[4] Giudice G. F., J. High Energy Phys. 9812 pp 027–
[5] DOI: 10.1016/S0550-3213(99)00429-0 · doi:10.1016/S0550-3213(99)00429-0
[6] DOI: 10.1103/PhysRevD.71.015013 · doi:10.1103/PhysRevD.71.015013
[7] DOI: 10.1016/0550-3213(94)00068-9 · doi:10.1016/0550-3213(94)00068-9
[8] DOI: 10.1016/0370-2693(96)00489-3 · doi:10.1016/0370-2693(96)00489-3
[9] DOI: 10.1103/PhysRevD.75.073014 · doi:10.1103/PhysRevD.75.073014
[10] DOI: 10.1016/j.physletb.2009.01.016 · doi:10.1016/j.physletb.2009.01.016
[11] DOI: 10.1103/PhysRevLett.102.071301 · doi:10.1103/PhysRevLett.102.071301
[12] DOI: 10.1103/PhysRevD.73.055004 · doi:10.1103/PhysRevD.73.055004
[13] DOI: 10.1103/PhysRevLett.92.031303 · doi:10.1103/PhysRevLett.92.031303
[14] DOI: 10.1103/PhysRevD.72.103521 · doi:10.1103/PhysRevD.72.103521
[15] March-Russell J., J. High Energy Phys. 0807 pp 058–
[16] DOI: 10.1103/PhysRevD.79.015014 · doi:10.1103/PhysRevD.79.015014
[17] Yuan Q., J. Cosmol. Astropart. Phys. 0912 pp 011–
[18] DOI: 10.1103/PhysRevD.79.083523 · doi:10.1103/PhysRevD.79.083523
[19] Iengo R., J. High Energy Phys. 0905 pp 024–
[20] DOI: 10.1103/PhysRevLett.104.151301 · doi:10.1103/PhysRevLett.104.151301
[21] DOI: 10.1103/PhysRevLett.102.051101 · doi:10.1103/PhysRevLett.102.051101
[22] DOI: 10.1103/PhysRevLett.102.181101 · doi:10.1103/PhysRevLett.102.181101
[23] Engelmann J. J., Astron. Astrophys. 233 pp 96–
[24] DOI: 10.1016/j.astropartphys.2008.07.010 · doi:10.1016/j.astropartphys.2008.07.010
[25] DOI: 10.1103/PhysRevLett.104.101101 · doi:10.1103/PhysRevLett.104.101101
[26] Slatyer T. R., J. Cosmol. Astropart. Phys. 1002 pp 028–
[27] DOI: 10.1016/j.physletb.2007.01.012 · doi:10.1016/j.physletb.2007.01.012
[28] DOI: 10.1103/PhysRevD.64.021302 · doi:10.1103/PhysRevD.64.021302
[29] DOI: 10.1103/PhysRevD.64.083507 · doi:10.1103/PhysRevD.64.083507
[30] Bringmann T., J. Cosmol. Astropart. Phys. 0407 pp 016–
[31] DOI: 10.1016/j.physletb.2010.03.018 · doi:10.1016/j.physletb.2010.03.018
[32] DOI: 10.1103/PhysRevD.81.083502 · doi:10.1103/PhysRevD.81.083502
[33] DOI: 10.1103/PhysRevD.71.063528 · doi:10.1103/PhysRevD.71.063528
[34] DOI: 10.1016/j.physletb.2009.06.030 · doi:10.1016/j.physletb.2009.06.030
[35] Palomares-Ruiz S., J. Cosmol. Astropart. Phys. 1007 pp 023–
[36] DOI: 10.1016/j.nuclphysb.2010.07.010 · Zbl 1206.85014 · doi:10.1016/j.nuclphysb.2010.07.010
[37] DOI: 10.1016/j.cpc.2008.11.019 · Zbl 1198.81033 · doi:10.1016/j.cpc.2008.11.019
[38] DOI: 10.1016/j.cpc.2006.11.008 · Zbl 1196.81050 · doi:10.1016/j.cpc.2006.11.008
[39] DOI: 10.1086/305152 · doi:10.1086/305152
[40] DOI: 10.1146/annurev.nucl.57.090506.123011 · doi:10.1146/annurev.nucl.57.090506.123011
[41] DOI: 10.1086/190685 · doi:10.1086/190685
[42] DOI: 10.1086/177173 · doi:10.1086/177173
[43] DOI: 10.1111/j.1365-2966.2005.09601.x · doi:10.1111/j.1365-2966.2005.09601.x
[44] DOI: 10.1088/0004-637X/720/1/435 · doi:10.1088/0004-637X/720/1/435
[45] DOI: 10.1103/PhysRevLett.106.161301 · doi:10.1103/PhysRevLett.106.161301
[46] DOI: 10.1103/PhysRevD.80.023505 · doi:10.1103/PhysRevD.80.023505
[47] DOI: 10.1103/PhysRevD.80.043526 · doi:10.1103/PhysRevD.80.043526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.