×

Gravitational production of superheavy dark matter and associated cosmological signatures. (English) Zbl 1418.83076

Summary: We study the gravitational production of super-Hubble-mass dark matter in the very early universe. We first review the simplest scenario where dark matter is produced mainly during slow roll inflation. Then we move on to consider the cases where dark matter is produced during the transition period between inflation and the subsequent cosmological evolution. The limits of smooth and sudden transitions are studied, respectively. The relic abundances and the cosmological collider signals are calculated.

MSC:

83F05 Relativistic cosmology
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
[2] L.H. Ford, Gravitational particle creation and inflation, Phys. Rev.D 35 (1987) 2955 [INSPIRE].
[3] M. Garny, M. Sandora and M.S. Sloth, Planckian interacting massive particles as dark matter, Phys. Rev. Lett.116 (2016) 101302 [arXiv:1511.03278] [INSPIRE]. · doi:10.1103/PhysRevLett.116.101302
[4] M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Theory and phenomenology of Planckian interacting massive particles as dark matter, JCAP02 (2018) 027 [arXiv:1709.09688] [INSPIRE].
[5] S. Hashiba and J. Yokoyama, Gravitational reheating through conformally coupled superheavy scalar particles, JCAP01 (2019) 028 [arXiv:1809.05410] [INSPIRE].
[6] J. Haro, W. Yang and S. Pan, Reheating in quintessential inflation via gravitational production of heavy massive particles: a detailed analysis, JCAP01 (2019) 023 [arXiv:1811.07371] [INSPIRE]. · Zbl 07486169
[7] S. Hashiba and J. Yokoyama, Gravitational particle creation for dark matter and reheating, Phys. Rev.D 99 (2019) 043008 [arXiv:1812.10032] [INSPIRE].
[8] E.W. Kolb, D.J.H. Chung and A. Riotto, WIMPzillas!, AIP Conf. Proc.484 (1999) 91 [hep-ph/9810361] [INSPIRE].
[9] E.W. Kolb, A.A. Starobinsky and I.I. Tkachev, Trans-Planckian WIMPzillas, JCAP07 (2007) 005 [hep-th/0702143] [INSPIRE].
[10] J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys.48 (2010) 495 [arXiv:1003.0904] [INSPIRE].
[11] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE]. · Zbl 1271.83088
[12] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev.D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].
[13] V. Kuzmin and I. Tkachev, Ultrahigh-energy cosmic rays, superheavy long living particles and matter creation after inflation, JETP Lett.68 (1998) 271 [Pisma Zh. Eksp. Teor. Fiz.68 (1998) 255] [hep-ph/9802304] [INSPIRE].
[14] D.J.H. Chung, E.W. Kolb, A. Riotto and I.I. Tkachev, Probing Planckian physics: resonant production of particles during inflation and features in the primordial power spectrum, Phys. Rev.D 62 (2000) 043508 [hep-ph/9910437] [INSPIRE].
[15] V.A. Kuzmin and I.I. Tkachev, Ultrahigh-energy cosmic rays and inflation relics, Phys. Rept.320 (1999) 199 [hep-ph/9903542] [INSPIRE].
[16] D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev.D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
[17] L.V. Delacretaz, V. Gorbenko and L. Senatore, The supersymmetric effective field theory of inflation, JHEP03 (2017) 063 [arXiv:1610.04227] [INSPIRE]. · Zbl 1377.83152
[18] S. Chang, C. Corianò and A.E. Faraggi, New dark matter candidates motivated from superstring derived unification, Phys. Lett.B 397 (1997) 76 [hep-ph/9603272] [INSPIRE].
[19] S. Chang, C. Corianò and A.E. Faraggi, Stable superstring relics, Nucl. Phys.B 477 (1996) 65 [hep-ph/9605325] [INSPIRE].
[20] A.E. Faraggi, K.A. Olive and M. Pospelov, Probing the desert with ultraenergetic neutrinos from the sun, Astropart. Phys.13 (2000) 31 [hep-ph/9906345] [INSPIRE].
[21] C. Corianò, A.E. Faraggi and M. Plümacher, Stable superstring relics and ultrahigh-energy cosmic rays, Nucl. Phys.B 614 (2001) 233 [hep-ph/0107053] [INSPIRE].
[22] S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-gaussianities, JHEP04 (2019) 120 [arXiv:1811.11200] [INSPIRE].
[23] L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.73 (1994) 3195 [hep-th/9405187] [INSPIRE].
[24] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[25] B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys.78 (2006) 537 [astro-ph/0507632] [INSPIRE].
[26] D. Boyanovsky, H.J. de Vega and R. Holman, Erice lectures on inflationary reheating, in Current topics in astrofundamental physics. Proceedings, International School of Astrophysics “<Emphasis Type=”Italic“>D. Chalonge”, 5thcourse, Erice, Italy, 7-15 September 1996, pg. 183 [hep-ph/9701304] [INSPIRE].
[27] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in inflationary cosmology: theory and applications, Ann. Rev. Nucl. Part. Sci.60 (2010) 27 [arXiv:1001.2600] [INSPIRE].
[28] A.V. Frolov, Non-linear dynamics and primordial curvature perturbations from preheating, Class. Quant. Grav.27 (2010) 124006 [arXiv:1004.3559] [INSPIRE]. · Zbl 1190.83117
[29] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of reheating after inflation: a review, Int. J. Mod. Phys.D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE]. · Zbl 1308.83155
[30] Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, JHEP09 (2018) 135 [arXiv:1804.07471] [INSPIRE]. · Zbl 1398.85010
[31] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational effects on inflaton decay, JCAP05 (2015) 038 [arXiv:1502.02475] [INSPIRE].
[32] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating backgrounds and its cosmological implications, Phys. Rev.D 94 (2016) 063517 [arXiv:1604.08898] [INSPIRE].
[33] D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-Hubble-mass particles: an analytic approach, JHEP01 (2019) 189 [arXiv:1812.00211] [INSPIRE].
[34] P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev.D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].
[35] R. Dabrowski and G.V. Dunne, Superadiabatic particle number in Schwinger and de Sitter particle production, Phys. Rev.D 90 (2014) 025021 [arXiv:1405.0302] [INSPIRE].
[36] D.J.H. Chung, Classical inflation field induced creation of superheavy dark matter, Phys. Rev.D 67 (2003) 083514 [hep-ph/9809489] [INSPIRE].
[37] J. Quintin, Y.-F. Cai and R.H. Brandenberger, Matter creation in a nonsingular bouncing cosmology, Phys. Rev.D 90 (2014) 063507 [arXiv:1406.6049] [INSPIRE].
[38] D.C.F. Celani, N. Pinto-Neto and S.D.P. Vitenti, Particle creation in bouncing cosmologies, Phys. Rev.D 95 (2017) 023523 [arXiv:1610.04933] [INSPIRE].
[39] M.V. Berry, Histories of adiabatic quantum transitions, Proc. Roy. Soc. Lond.A 429 (1990) 61.
[40] M.V. Berry and R. Lim, Universal transition prefactors derived by superadiabatic renormalization, J. Phys.A 26 (1993) 4737.
[41] V. Betz and S. Teufel, Precise coupling terms in adiabatic quantum evolution: the generic case, Commun. Math. Phys.260 (2005) 481 [math-ph/0411083]. · Zbl 1087.81049
[42] S. Winitzki, Cosmological particle production and the precision of the WKB approximation, Phys. Rev.D 72 (2005) 104011 [gr-qc/0510001] [INSPIRE].
[43] S.P. Kim, The Stokes phenomenon and quantum tunneling for de Sitter radiation in nonstationary coordinates, JHEP09 (2010) 054 [arXiv:1006.4004] [INSPIRE]. · Zbl 1291.83146
[44] S.P. Kim, Geometric origin of Stokes phenomenon for de Sitter radiation, Phys. Rev.D 88 (2013) 044027 [arXiv:1307.0590] [INSPIRE].
[45] C.K. Dumlu and G.V. Dunne, The Stokes phenomenon and Schwinger vacuum pair production in time-dependent laser pulses, Phys. Rev. Lett.104 (2010) 250402 [arXiv:1004.2509] [INSPIRE].
[46] R. Dabrowski and G.V. Dunne, Time dependence of adiabatic particle number, Phys. Rev.D 94 (2016) 065005 [arXiv:1606.00902] [INSPIRE].
[47] N.J. Higham et al., Princeton companion to applied mathematics, Princeton University Press, Princeton, U.S.A. (2015). · Zbl 1327.00002
[48] M.V. Barry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc. Lond.A 422 (1989) 7 [INSPIRE].
[49] R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, U.S.A. (1973). · Zbl 0279.41030
[50] D.J.H. Chung, E.W. Kolb, A. Riotto and L. Senatore, Isocurvature constraints on gravitationally produced superheavy dark matter, Phys. Rev.D 72 (2005) 023511 [astro-ph/0411468] [INSPIRE].
[51] D.J.H. Chung, L.L. Everett, H. Yoo and P. Zhou, Gravitational fermion production in inflationary cosmology, Phys. Lett.B 712 (2012) 147 [arXiv:1109.2524] [INSPIRE].
[52] D.J.H. Chung, H. Yoo and P. Zhou, Fermionic isocurvature perturbations, Phys. Rev.D 91 (2015) 043516 [arXiv:1306.1966] [INSPIRE].
[53] K. Kannike, A. Racioppi and M. Raidal, Super-heavy dark matter — towards predictive scenarios from inflation, Nucl. Phys.B 918 (2017) 162 [arXiv:1605.09378] [INSPIRE]. · Zbl 1360.83090
[54] G. Alonso- Álvarez and J. Jaeckel, Lightish but clumpy: scalar dark matter from inflationary fluctuations, JCAP10 (2018) 022 [arXiv:1807.09785] [INSPIRE]. · Zbl 07462547
[55] E.W. Kolb and A.J. Long, Superheavy dark matter through Higgs portal operators, Phys. Rev.D 96 (2017) 103540 [arXiv:1708.04293] [INSPIRE].
[56] M. Fairbairn, K. Kainulainen, T. Markkanen and S. Nurmi, Despicable dark relics: generated by gravity with unconstrained masses, JCAP04 (2019) 005 [arXiv:1808.08236] [INSPIRE]. · Zbl 07486863
[57] M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Charged Planckian interacting dark matter, JCAP01 (2019) 021 [arXiv:1810.01428] [INSPIRE].
[58] X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
[59] X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE].
[60] D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[61] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv:1211.1624] [INSPIRE]. · Zbl 1342.83110
[62] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[63] S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept.730 (2018) 1 [arXiv:1705.02358] [INSPIRE]. · Zbl 1381.83158
[64] T. Markkanen and A. Rajantie, Massive scalar field evolution in de Sitter, JHEP01 (2017) 133 [arXiv:1607.00334] [INSPIRE]. · Zbl 1373.83019
[65] T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP10 (2014) 166 [arXiv:1408.4141] [INSPIRE]. · Zbl 1333.83272
[66] K. Enqvist, R.J. Hardwick, T. Tenkanen, V. Vennin and D. Wands, A novel way to determine the scale of inflation, JCAP02 (2018) 006 [arXiv:1711.07344] [INSPIRE].
[67] K. Dimopoulos, L. Donaldson Wood and C. Owen, Instant preheating in quintessential inflation with α-attractors, Phys. Rev.D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].
[68] T. Nakama and J. Yokoyama, Reheating through the Higgs amplified by spinodal instabilities and gravitational creation of gravitons, PTEP2019 (2019) 033E02 [arXiv:1803.07111] [INSPIRE].
[69] H. An, M.B. Wise and Z. Zhang, De Sitter quantum loops as the origin of primordial non-Gaussianities, Phys. Rev.D 99 (2019) 056007 [arXiv:1806.05194] [INSPIRE].
[70] X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP09 (2012) 021 [arXiv:1205.0160] [INSPIRE].
[71] S. Pi and M. Sasaki, Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP10 (2012) 051 [arXiv:1205.0161] [INSPIRE].
[72] X. Tong, Y. Wang and S. Zhou, On the effective field theory for quasi-single field inflation, JCAP11 (2017) 045 [arXiv:1708.01709] [INSPIRE]. · Zbl 1515.83456
[73] A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly coupled quasi-single field inflation, JCAP01 (2018) 041 [arXiv:1710.03054] [INSPIRE]. · Zbl 1527.83146
[74] Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP04 (2019) 125 [arXiv:1812.10654] [INSPIRE].
[75] X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP01 (2007) 002 [hep-th/0605045] [INSPIRE].
[76] J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP11 (2013) 043 [arXiv:1306.3691] [INSPIRE].
[77] X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP02 (2016) 013 [arXiv:1509.03930] [INSPIRE].
[78] X. Chen, M.H. Namjoo and Y. Wang, Probing the primordial universe using massive fields, arXiv:1601.06228 [INSPIRE].
[79] X. Chen, M.H. Namjoo and Y. Wang, A direct probe of the evolutionary history of the primordial universe, Sci. China Phys. Mech. Astron.59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].
[80] X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to Standard Model fields in inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE]. · Zbl 1390.83439
[81] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].
[82] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE]. · Zbl 1378.85005
[83] Y.-P. Wu and J. Yokoyama, Loop corrections to primordial fluctuations from inflationary phase transitions, JCAP05 (2018) 009 [arXiv:1704.05026] [INSPIRE]. · Zbl 07462689
[84] W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger effect on primordial spectra, JHEP04 (2019) 066 [arXiv:1810.09815] [INSPIRE]. · Zbl 1415.85004
[85] S. Weinberg, Ultraviolet divergences in cosmological correlations, Phys. Rev.D 83 (2011) 063508 [arXiv:1011.1630] [INSPIRE].
[86] X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-Gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE].
[87] G.R. Dvali and S.-H. Henry Tye, Brane inflation, Phys. Lett.B 450 (1999) 72 [hep-ph/9812483] [INSPIRE]. · Zbl 1058.81648
[88] S.-H. Henry Tye, Brane inflation: string theory viewed from the cosmos, Lect. Notes Phys.737 (2008) 949 [hep-th/0610221] [INSPIRE]. · Zbl 1274.83185
[89] D.J.H. Chung, H. Yoo and P. Zhou, Quadratic isocurvature cross-correlation, Ward identity and dark matter, Phys. Rev.D 87 (2013) 123502 [arXiv:1303.6024] [INSPIRE].
[90] E. Pajer, F. Schmidt and M. Zaldarriaga, The observed squeezed limit of cosmological three-point functions, Phys. Rev.D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].
[91] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[92] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP10 (2004) 006 [astro-ph/0407059] [INSPIRE].
[93] R. Wong, Asymptotic and computational analysis: conference in honor of Frank W.J. Olver’s 65thbirthday, CRC Press, U.S.A. (1990).
[94] X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE]. · Zbl 1515.83321
[95] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
[96] X. Chen, Primordial non-Gaussianities from inflation models, Adv. Astron.2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].
[97] Y. Wang, Inflation, cosmic perturbations and non-Gaussianities, Commun. Theor. Phys.62 (2014) 109 [arXiv:1303.1523] [INSPIRE]. · Zbl 1294.83001
[98] H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE]. · Zbl 1390.83465
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.