×

Gravitational forces on a codimension-2 brane. (English) Zbl 1333.83128

Summary: We compute the gravitational response of six dimensional gauged, chiral supergravity to localized stress energy on one of two space-filling branes, including the effects of compactifying the extra dimensions and brane back-reaction. We find a broad class of exact solutions, including various black-brane solutions. Several approximate solutions are also described, such as the near-horizon geometry of a small black hole which is argued to be approximately described by a 6D Schwarzschild (or Kerr) black hole, with event horizon appropriately modified to encode the brane back-reaction. The general linearized far-field solutions are found in the 4D regime very far from the source, and all integration constants are related to physical quantities describing the branes and the localized energy source. The localized source determines two of these, corresponding to the source mass and the size of the strength of a coupling to a 4D scalar mode whose mass is parametrically smaller than the KK scale. At large distances the solutions agree with those of 4D general relativity, but for an intermediate range of distances (larger than the KK scale) the solutions better fit a Brans-Dicke theory. For a realistic choice of parameters the KK scale could lie at a micron, while the crossover to Brans-Dicke behaviour could occur at around 10 microns. While allowed by present data this points to potentially measurable changes to Newton’s Law arising at distances larger than the KK scale.

MSC:

83C65 Methods of noncommutative geometry in general relativity
83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of the cosmological parameters Omega and Lambda from the first 7 supernovae at z ≥ 0.35, Astrophys. J.483 (1997) 565 [astro-ph/9608192] [INSPIRE].
[2] Supernova Cosmology Project collaboration, S. Perlmutter et al., Discovery of a supernova explosion at half the age of the Universe and its cosmological implications, Nature391 (1998) 51 [astro-ph/9712212] [INSPIRE].
[3] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J.116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
[4] N.A. Bahcall, J.P. Ostriker, S. Perlmutter and P.J. Steinhardt, The Cosmic triangle: Assessing the state of the universe, Science284 (1999) 1481 [astro-ph/9906463] [INSPIRE].
[5] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP05 (2004) 074 [hep-th/0312099] [INSPIRE].
[6] A. Dolgov and M. Kawasaki, Can modified gravity explain accelerated cosmic expansion?, Phys. Lett.B 573 (2003) 1 [astro-ph/0307285] [INSPIRE]. · Zbl 1037.83028
[7] S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConfC 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys.4 (2007) 115] [hep-th/0601213] [INSPIRE] [INSPIRE].
[8] W. Hu and I. Sawicki, A Parameterized Post-Friedmann Framework for Modified Gravity, Phys. Rev.D 76 (2007) 104043 [arXiv:0708.1190] [INSPIRE].
[9] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
[10] P. Brax, C. van de Bruck, S. Clesse, A.-C. Davis and G. Sculthorpe, Early Modified Gravity: Implications for Cosmology, arXiv:1312.3361 [INSPIRE].
[11] S.M. Carroll, The Cosmological constant, Living Rev. Rel.4 (2001) 1 [astro-ph/0004075] [INSPIRE]. · Zbl 1023.83022
[12] P. Binetruy, Cosmological constant versus quintessence, Int. J. Theor. Phys.39 (2000) 1859 [hep-ph/0005037] [INSPIRE]. · Zbl 0976.83072
[13] T. Padmanabhan, Cosmological constant: the Weight of the vacuum, Phys. Rept.380 (2003) 235 [hep-th/0212290] [INSPIRE]. · Zbl 1027.83544
[14] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys.D 15 (2006) 1753 [hep-th/0603057] [INSPIRE]. · Zbl 1203.83061
[15] J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys.46 (2008) 385 [arXiv:0803.0982] [INSPIRE].
[16] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys.61 (1989) 1 [INSPIRE]. · Zbl 1129.83361
[17] C. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics, arXiv:1309.4133 [INSPIRE]. · Zbl 1326.83006
[18] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[19] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
[20] E. Adelberger, B.R. Heckel and A. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci.53 (2003) 77 [hep-ph/0307284] [INSPIRE].
[21] C. Hoyle et al., Sub-millimeter tests of the gravitational inverse-square law, Phys. Rev.D 70 (2004) 042004 [hep-ph/0405262] [INSPIRE].
[22] D. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett.98 (2007) 021101 [hep-ph/0611184] [INSPIRE].
[23] E. Adelberger et al., Particle Physics Implications of a Recent Test of the Gravitational Inverse Sqaure Law, Phys. Rev. Lett.98 (2007) 131104 [hep-ph/0611223] [INSPIRE].
[24] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett.B 480 (2000) 193 [hep-th/0001197] [INSPIRE]. · Zbl 0960.83036
[25] S. Kachru, M.B. Schulz and E. Silverstein, Selftuning flat domain walls in 5 − D gravity and string theory, Phys. Rev.D 62 (2000) 045021 [hep-th/0001206] [INSPIRE].
[26] J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP09 (2000) 012 [hep-th/0003067] [INSPIRE]. · Zbl 0990.83536
[27] S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].
[28] I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP09 (2003) 004 [hep-th/0302129] [INSPIRE].
[29] Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6 − D supergravity, Nucl. Phys.B 680 (2004) 389 [hep-th/0304256] [INSPIRE]. · Zbl 1036.83025
[30] C. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An Update, Annals Phys.313 (2004) 283 [hep-th/0402200] [INSPIRE]. · Zbl 1054.83028
[31] C. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc.743 (2005) 417 [hep-th/0411140] [INSPIRE].
[32] C. Burgess and L. van Nierop, Technically Natural Cosmological Constant From Supersymmetric 6D Brane Backreaction, Phys. Dark Univ.2 (2013) 1 [arXiv:1108.0345] [INSPIRE].
[33] Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP09 (2003) 037 [hep-th/0308064] [INSPIRE].
[34] C. Burgess and L. van Nierop, Bulk Axions, Brane Back-reaction and Fluxes, JHEP02 (2011) 094 [arXiv:1012.2638] [INSPIRE]. · Zbl 1294.81173
[35] C. Burgess and L. van Nierop, Large Dimensions and Small Curvatures from Supersymmetric Brane Back-reaction, JHEP04 (2011) 078 [arXiv:1101.0152] [INSPIRE].
[36] C. Burgess, L. van Nierop and M. Williams, Distributed SUSY Breaking: Dark Energy, Newton’s Law and the LHC, arXiv:1311.3911 [INSPIRE].
[37] H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett.B 144 (1984) 187 [INSPIRE].
[38] H. Nishino and E. Sezgin, The Complete N = 2, d = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys.B 278 (1986) 353 [INSPIRE].
[39] S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An Anomaly Free Model in Six-Dimensions, Phys. Lett.B 151 (1985) 351 [INSPIRE].
[40] S.D. Avramis, A. Kehagias and S. Randjbar-Daemi, A new anomaly-free gauged supergravity in six dimensions, JHEP05 (2005) 057 [hep-th/0504033] [INSPIRE].
[41] S.D. Avramis and A. Kehagias, A systematic search for anomaly-free supergravities in six dimensions, JHEP10 (2005) 052 [hep-th/0508172] [INSPIRE].
[42] M. Peloso, L. Sorbo and G. Tasinato, Standard 4 − D gravity on a brane in six dimensional flux compactifications, Phys. Rev.D 73 (2006) 104025 [hep-th/0603026] [INSPIRE].
[43] A. Salvio, Brane Gravitational Interactions from 6D Supergravity, Phys. Lett.B 681 (2009) 166 [arXiv:0909.0023] [INSPIRE].
[44] N. Kaloper and D. Kiley, Exact black holes and gravitational shockwaves on codimension-2 branes, JHEP03 (2006) 077 [hep-th/0601110] [INSPIRE]. · Zbl 1226.83033
[45] D. Kiley, Rotating Black Holes on Codimension-2 Branes, Phys. Rev.D 76 (2007) 126002 [arXiv:0708.1016] [INSPIRE].
[46] M. Aryal, L. Ford and A. Vilenkin, Cosmic Strings and Black Holes, Phys. Rev.D 34 (1986) 2263 [INSPIRE]. · Zbl 0966.83542
[47] S. Weinberg, Gravitation and Cosmology, Wiley, New York U.S.A. (1973).
[48] A. Salam and E. Sezgin, Chiral Compactification on Minkowski × S2of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett.B 147 (1984) 47 [INSPIRE].
[49] G. Gibbons, R. Güven and C. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett.B 595 (2004) 498 [hep-th/0307238] [INSPIRE]. · Zbl 1247.81373
[50] C. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP11 (2004) 069 [hep-th/0408109] [INSPIRE].
[51] A. Kehagias, A conical tear drop as a vacuum-energy drain for the solution of the cosmological constant problem, Phys. Lett.B 600 (2004) 133 [hep-th/0406025] [INSPIRE]. · Zbl 1247.83277
[52] M. Williams, Technically Natural Vacuum Energy at the Tip of a Supersymmetric Teardrop, arXiv:1311.4172 [INSPIRE].
[53] H.M. Lee and C. Lüdeling, The general warped solution with conical branes in six-dimensional supergravity, JHEP01 (2006) 062 [hep-th/0510026] [INSPIRE].
[54] A.J. Tolley, C. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP03 (2006) 091 [hep-th/0512218] [INSPIRE]. · Zbl 1226.81233
[55] L. van Nierop and C. Burgess, Sculpting the Extra Dimensions: Inflation from Codimension-2 Brane Back-reaction, JCAP04 (2012) 037 [arXiv:1108.2553] [INSPIRE].
[56] C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective Field Theories and Matching for Codimension-2 Branes, JHEP03 (2009) 124 [arXiv:0812.3820] [INSPIRE].
[57] A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 Brane-Bulk Matching: Examples from Six and Ten Dimensions, New J. Phys.12 (2010) 075015 [arXiv:0912.3039] [INSPIRE]. · Zbl 1445.81042
[58] A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev.D 23 (1981) 852 [INSPIRE].
[59] G. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys.B 298 (1988) 741 [INSPIRE].
[60] C.G. Callan Jr., R.C. Myers and M. Perry, Black Holes in String Theory, Nucl. Phys.B 311 (1989) 673 [INSPIRE].
[61] G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys.B 360 (1991) 197 [INSPIRE].
[62] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev.D 43 (1991) 3140 [Erratum ibid.D 45 (1992) 3888] [INSPIRE].
[63] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE]. · Zbl 1051.83544
[64] R.C. Myers and M. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys.172 (1986) 304 [INSPIRE]. · Zbl 0601.53081
[65] P. Kanti, Black holes in theories with large extra dimensions: A Review, Int. J. Mod. Phys.A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE]. · Zbl 1066.83001
[66] C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP03 (2009) 124 [arXiv:0812.3820] [INSPIRE].
[67] A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys.12 (2010) 075015 [arXiv:0912.3039] [INSPIRE]. · Zbl 1445.81042
[68] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research, L. Witten eds., Wiley, New York U.S.A. (1962). · Zbl 0092.20705
[69] R.L. Arnowitt, S. Deser and C.W. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev.122 (1961) 997 [INSPIRE]. · Zbl 0094.23003
[70] L. Abbott and S. Deser, Charge Definition in Nonabelian Gauge Theories, Phys. Lett.B 116 (1982) 259 [INSPIRE].
[71] L. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys.B 195 (1982) 76 [INSPIRE]. · Zbl 0900.53033
[72] C. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel.7 (2004) 5 [gr-qc/0311082] [INSPIRE]. · Zbl 1070.83009
[73] C. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci.57 (2007) 329 [hep-th/0701053] [INSPIRE].
[74] H.M. Lee and A. Papazoglou, Scalar mode analysis of the warped Salam-Sezgin model, Nucl. Phys.B 747 (2006) 294 [Erratum ibid.B 765 (2007) 200] [hep-th/0602208] [INSPIRE]. · Zbl 1178.83058
[75] S. Parameswaran, S. Randjbar-Daemi and A. Salvio, Gauge Fields, Fermions and Mass Gaps in 6D Brane Worlds, Nucl. Phys.B 767 (2007) 54 [hep-th/0608074] [INSPIRE]. · Zbl 1117.83381
[76] C. Burgess, C. de Rham, D. Hoover, D. Mason and A. Tolley, Kicking the rugby ball: Perturbations of 6D gauged chiral supergravity, JCAP02 (2007) 009 [hep-th/0610078] [INSPIRE].
[77] S. Parameswaran, S. Randjbar-Daemi and A. Salvio, Stability and negative tensions in 6D brane worlds, JHEP01 (2008) 051 [arXiv:0706.1893] [INSPIRE].
[78] S. Parameswaran, S. Randjbar-Daemi and A. Salvio, General Perturbations for Braneworld Compactifications and the Six Dimensional Case, JHEP03 (2009) 136 [arXiv:0902.0375] [INSPIRE].
[79] Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6 − D supergravity, JHEP03 (2003) 032 [hep-th/0212091] [INSPIRE].
[80] T. Damour and G. Esposito-Farese, Tensor multiscalar theories of gravitation, Class. Quant. Grav.9 (1992) 2093 [INSPIRE]. · Zbl 0780.53054
[81] Y. Fujii and K. Maeda, The Scalar-Tensor Theory of Gravitation, Cambridge University Press, Cambridge U.K. (2003). · Zbl 1079.83023
[82] T. Singh and L. Rai, Scalar-tensor theories of gravitation: foundations and prospects, Gen. Rel. Grav.15 (1983) 875 [INSPIRE]. · Zbl 0519.53023
[83] C.H. Brans, The roots of scalar-tensor theory: an approximate history, gr-qc/0506063 [INSPIRE].
[84] O. Heckmann, P. Jordan and R. Fricke, Zur erweiterten Gravitations theorie. I, Astroph. Z.28 (1951) 113. · Zbl 0043.20801
[85] K. Just, The Motion of Mercury According to the Theory of Thiry and Lichnerowicz, Z. Naturforsch.14 (1959) 751.
[86] H.A. Buchdahl, Reciprocal Static Metrics and Scalar Fields in the General Theory of Relativity, Phys. Rev.115 (1959) 1325 [INSPIRE]. · Zbl 0087.42405
[87] A. Janis, D. Robinson and J. Winicour, Comments on Einstein scalar solutions, Phys. Rev.186 (1969) 1729 [INSPIRE].
[88] R. Coqueraux and G. Esposito-Farèse, The theory of Kaluza-Klein-Jordan-Thiry revisited, Annales Poincaré Phys. Theor.52 (1990) 113. · Zbl 0703.53082
[89] C. Burgess, R.C. Myers and F. Quevedo, On spherically symmetric string solutions in four-dimensions, Nucl. Phys.B 442 (1995) 75 [hep-th/9410142] [INSPIRE]. · Zbl 0990.83560
[90] C. Burgess, R.C. Myers and F. Quevedo, Duality and four-dimensional black holes, Nucl. Phys.B 442 (1995) 97 [hep-th/9411195] [INSPIRE]. · Zbl 0990.83559
[91] C. Brans and R. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev.124 (1961) 925 [INSPIRE]. · Zbl 0103.21402
[92] R. Dicke, Mach’s principle and invariance under transformation of units, Phys. Rev.125 (1962) 2163 [INSPIRE]. · Zbl 0113.45101
[93] C. Brans, Mach’s Principle and a Relativistic Theory of Gravitation. II, Phys. Rev.125 (1962) 2194 [INSPIRE]. · Zbl 0173.54005
[94] C.M. Will, The Confrontation between general relativity and experiment, Living Rev. Rel.4 (2001) 4 [gr-qc/0103036] [INSPIRE]. · Zbl 1024.83003
[95] A. Albrecht, C. Burgess, F. Ravndal and C. Skordis, Natural quintessence and large extra dimensions, Phys. Rev.D 65 (2002) 123507 [astro-ph/0107573] [INSPIRE].
[96] C.P. Burgess, R. Diener, L. van Nierop and M. Williams, in preparation.
[97] M. Bando, T. Kugo, T. Noguchi and K. Yoshioka, Brane fluctuation and suppression of Kaluza-Klein mode couplings, Phys. Rev. Lett.83 (1999) 3601 [hep-ph/9906549] [INSPIRE]. · Zbl 0951.83052
[98] A. Dobado and A.L. Maroto, The Dynamics of the Goldstone bosons on the brane, Nucl. Phys.B 592 (2001) 203 [hep-ph/0007100] [INSPIRE].
[99] P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys.B 596 (2001) 125 [hep-ph/0007267] [INSPIRE].
[100] J. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev.D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE].
[101] S. Cullen and M. Perelstein, SN1987A constraints on large compact dimensions, Phys. Rev. Lett.83 (1999) 268 [hep-ph/9903422] [INSPIRE].
[102] V.D. Barger, T. Han, C. Kao and R.-J. Zhang, Astrophysical constraints on large extra dimensions, Phys. Lett.B 461 (1999) 34 [hep-ph/9905474] [INSPIRE].
[103] C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN1987a and nucleon-nucleon scattering data, Nucl. Phys.B 595 (2001) 335 [nucl-th/0007016] [INSPIRE].
[104] S. Hannestad and G.G. Raffelt, Stringent neutron star limits on large extra dimensions, Phys. Rev. Lett.88 (2002) 071301 [hep-ph/0110067] [INSPIRE].
[105] S. Hannestad and G. Raffelt, New supernova limit on large extra dimensions, Phys. Rev. Lett.87 (2001) 051301 [hep-ph/0103201] [INSPIRE].
[106] D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev.D 63 (2001) 025007 [hep-ph/0007178] [INSPIRE].
[107] P. Callin and C. Burgess, Deviations from Newton’s law in supersymmetric large extra dimensions, Nucl. Phys.B 752 (2006) 60 [hep-ph/0511216] [INSPIRE]. · Zbl 1215.83045
[108] C. Burgess, J. Matias and F. Quevedo, MSLED: A Minimal supersymmetric large extra dimensions scenario, Nucl. Phys.B 706 (2005) 71 [hep-ph/0404135] [INSPIRE]. · Zbl 1119.81410
[109] G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys.B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].
[110] T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev.D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].
[111] J.L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev. Lett.82 (1999) 4765 [hep-ph/9811356] [INSPIRE].
[112] G.F. Giudice and A. Strumia, Constraints on extra dimensional theories from virtual graviton exchange, Nucl. Phys.B 663 (2003) 377 [hep-ph/0301232] [INSPIRE]. · Zbl 1028.83509
[113] G. Azuelos, P. Beauchemin and C. Burgess, Phenomenological constraints on extra dimensional scalars, J. Phys.G 31 (2005) 1 [hep-ph/0401125] [INSPIRE].
[114] P. Beauchemin, G. Azuelos and C. Burgess, Dimensionless coupling of bulk scalars at the LHC, J. Phys.G 30 (2004) N17 [hep-ph/0407196] [INSPIRE].
[115] M. Williams, C. Burgess, A. Maharana and F. Quevedo, New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range, JHEP08 (2011) 106 [arXiv:1103.4556] [INSPIRE].
[116] R. Diener and C. Burgess, Bulk Stabilization, the Extra-Dimensional Higgs Portal and Missing Energy in Higgs Events, JHEP05 (2013) 078 [arXiv:1302.6486] [INSPIRE]. · Zbl 1342.81419
[117] I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys.A 15 (2000) 4237 [hep-ph/0007226] [INSPIRE]. · Zbl 0971.81149
[118] I. Antoniadis, E. Kiritsis, J. Rizos and T. Tomaras, D-branes and the standard model, Nucl. Phys.B 660 (2003) 81 [hep-th/0210263] [INSPIRE].
[119] D. Lüst, S. Stieberger and T.R. Taylor, The LHC String Hunter’s Companion, Nucl. Phys.B 808 (2009) 1 [arXiv:0807.3333] [INSPIRE]. · Zbl 1192.81279
[120] D. Lüst, O. Schlotterer, S. Stieberger and T. Taylor, The LHC String Hunter’s Companion (II): Five-Particle Amplitudes and Universal Properties, Nucl. Phys.B 828 (2010) 139 [arXiv:0908.0409] [INSPIRE]. · Zbl 1203.81103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.