×

On efficient high-order semi-implicit time-stepping schemes for unsteady incompressible Navier-Stokes equations. (English) Zbl 1410.76186

Summary: We focus on the development of higher-order semi-implicit time-stepping methods to solve the incompressible Navier-Stokes equations. The Taylor-Hood mixed finite elements method (\(\mathbb{P}_2 - \mathbb{P}_1\)) is used for space approximation of velocity and pressure. Semi-implicit time discretizations can provide very accurate approximations for nonstationary flow while treating the nonlinear terms explicitly and avoiding the need for a fancy nonlinear iterative solver. We first introduced three variants of higher-order semi-implicit time-stepping schemes: a multistep semi-implicit backward difference formulae (SBDF) which is the easiest to implement; a one-step defect correction (DC) which produce better approximations than SBDF methods in terms of numerical errors on velocity and pressure (in time) for a given order; the one proposed by J.-L. Guermond and P. Minev (GM) [SIAM J. Sci. Comput. 37, No. 6, A2656–A2681 (2015; Zbl 1382.65315)], an uncoupled method which is based upon defect correction and artificial compressibility methods. SBDF and DC methods produce saddle point linear system while GM generates two linear systems with symmetric and positive definite matrix. We propose a modification on GM denoted as GM-SRM methods-which implement sequential regularization method of Navier-Stokes equations. GM-SRM methods produce more rapid convergence on pressure during the start-up while requiring smaller stabilization parameter than that for GM methods. We showcase the numerical accuracy, stability and efficiency of these methods through numerical test cases: two manufactured solutions; the flow past a circular cylinder; and the lid-driven cavity flow, all in 2D settings. All methods show an agreement with the theoretical convergence rate. SBDF methods are the most CPU-efficient, followed by DC, GM and GM-SRM methods. We observe that the presence of \(\text{grad} - \text{div}\) term in both GM and GM-SRM improves the numerical stability in terms of producing a higher CFL bound. Furthermore, relevant parameters, such as the Strouhal number, lift and drag coefficients are found to be very close to published values.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations

Citations:

Zbl 1382.65315

Software:

FEATFLOW; FreeFem++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akrivis, G.; Crouzeix, M.; Makridakis, C., Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math Comput, 67, 222, 457-477, (1998) · Zbl 0896.65066
[2] Auteri, F.; Parolini, N.; Quartapelle, L., Numerical investigation on the stability of singular driven cavity flow, J Comput Phys, 183, 1-25, (2002) · Zbl 1021.76040
[3] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J Numer Anal, 32, 3, 797-823, (1995) · Zbl 0841.65081
[4] Blevins, R. D., Flow-induced vibration, 377, (1990), Van Nostrand Reinhold Co., Inc. New York NY, USA
[5] Boffi, D.; Brezzi, F.; Fortin, M., Mixed finite element methods and applications, 691, (2013), Springer Verlag Berlin, Heidelberg
[6] Baek, H.; Karniadakis, G. E., Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier-Stokes equations, J Comput Phys, 230, 4384-4402, (2011) · Zbl 1416.76093
[7] Baker, G. A.; Dougalis, V. A.; Karakashian, O. A., On a higher-order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math Comput, 39, 160, 339-375, (1982) · Zbl 0503.76038
[8] Bruneau, C. H.; Saad, M., The 2d lid-driven cavity problem revisited, Comput Fluids, 35, 326-348, (2005) · Zbl 1099.76043
[9] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J Comput Phys, 2, 1, 12-26, (1967) · Zbl 0149.44802
[10] Dai, X.; Sun, J.; Cheng, X. L., Error estimates for an operator-splitting method for Navier-Stokes equations: second-order schemes, J Comput Appl Math, 231, 696-704, (2009) · Zbl 1167.76024
[11] Ethier, M.; Bourgault, Y., Semi-implicit time-discretization schemes for the bidomain model, SIAM J Numer Anal, 46, 5, 2443-2468, (2008) · Zbl 1182.92009
[12] Elman, H.; Silvester, D.; Wathen, A., Finite elements and fast iterative solvers with applications in incompressible fluid dynamics, 400, (2008), Oxford University Press New York
[13] Fortin A., Jardak M., Gervais J.J., Pierre R.. 1997. Localization of Hopf bifurcations in fluid flow problems. 24. pp. 1185-1210.; Fortin A., Jardak M., Gervais J.J., Pierre R.. 1997. Localization of Hopf bifurcations in fluid flow problems. 24. pp. 1185-1210. · Zbl 0886.76042
[14] Fortin, M.; Glowinski, R., Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, 340, (2000), Elsevier
[15] Goldstein S.. 1938. Modern development in fluid dynamics. 35. pp. 421-447.; Goldstein S.. 1938. Modern development in fluid dynamics. 35. pp. 421-447.
[16] Girault, V.; Raviart, P. A., Finite element methods for Navier-Stokes equations: theory and algorithms, 376, (2011), Springer-Verlag Heidelberg
[17] Glowinski, R.; Pironneau, O., Finite element methods for Navier-Stokes equations, Ann Rev Fluid Mech, 24, 167-204, (1992) · Zbl 0743.76051
[18] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 387-411, (1982) · Zbl 0511.76031
[19] Gresho, P. M.; Griffiths, D. F.; Silvester, D. J., Adaptive time-stepping for incompressible flow part i: scalar advection-diffusion, SIAM J Sci Comput, 30, 4, 2018-2054, (2008) · Zbl 1167.76026
[20] Guermond, J. L.; Minev, P. D., High-order time stepping for the incompressible Navier-Stokes equations, SIAM J Sci Comput, 37, 6, A2656-A2681, (2015) · Zbl 1382.65315
[21] Guermond, J. L.; Minev, P.; Jie, S., An overview of projection methods for incompressible flow, Comput Methods Appl Mech Eng, 195, 6011-6045, (2006) · Zbl 1122.76072
[22] Hecht F.. FreeFEM++: Third edition, version 3.32. 2014. http://www.freefem.org/ff++/ftp/freefem++doc.pdf; Hecht F.. FreeFEM++: Third edition, version 3.32. 2014. http://www.freefem.org/ff++/ftp/freefem++doc.pdf
[23] John, V., Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int J Numer Methods Fluids, 44, 777-788, (2004) · Zbl 1085.76510
[24] Kupferman, R., A central-difference scheme for a pure stream function formulation of incompressible viscous flow, SIAM J Sci Comput, 23, 1, 1-18, (2001) · Zbl 0995.76060
[25] Kloucek, P.; Rys, F. S., Stability of the fractional step θ-scheme for the nonstationary Navier-Stokes equations, SIAM J Numer Anal, 31, 5, 1312-1335, (1994) · Zbl 0810.76036
[26] Kress, W.; Gustafsson, B., Deferred correction methods for initial boundary value problems, J Sci Comput, 17, 1-4, 241-251, (2001) · Zbl 1003.65106
[27] Kress, W.; Lötstedt, P., Time-step restrictions using semi-implicit methods for the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 195, 4433-4447, (2006) · Zbl 1124.76040
[28] Kim, J.; Moin, P., Application of a fractional step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 308-323, (1985) · Zbl 0582.76038
[29] Labovschii, A., A defect correction method for the time-dependent Navier-Stokes equations, Numer Methods Partial Differ Equ, 25, 1, 1-25, (2009) · Zbl 1394.76087
[30] Lin, P., A sequential regularization method for time-dependent incompressible Navier-Stokes equations, SIAM J Numer Anal, 34, 3, 1051-1071, (1997) · Zbl 0882.76018
[31] Labovsky, A.; Layton, W. J.; Manica, C. C.; Neda, M.; Rebholz, L. G., The stabilized extrapolated trapezoidal finite-element methods for Navier-Stokes equations, Comput Methods Appl Mech Eng, 198, 958-974, (2009) · Zbl 1229.76051
[32] Lu, X. L.; Lin, P.; Liu, J. G., Analysis of a sequential regularization method for the unsteady Navier-Stokes equations, Math Comput, 77, 263, 1467-1494, (2008) · Zbl 1285.76018
[33] Mittal, S.; Raghuvanshi, A., Control of vortex shedding behind circular cylinder for flows at low reynold numbers, Internal J Numer Methods Fluids, 35, 421-447, (2001) · Zbl 1013.76049
[34] Mittal S., Tezduyar T.E.. 1992. Notes on the Stabilized Space-Time Finite-Element Formulation of Unsteady Incompressible Flows. 73. pp. 93-112.; Mittal S., Tezduyar T.E.. 1992. Notes on the Stabilized Space-Time Finite-Element Formulation of Unsteady Incompressible Flows. 73. pp. 93-112.
[35] Olshanskii, M. A.; Lube, G.; Heister, T.; Löwe, J., Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 198, 3975-3988, (2009) · Zbl 1231.76161
[36] Olshanskii, M. A.; Reusken, A., Grad-div stabilization for Stokes equations, Math Comput, 73, 248, 1699-1718, (2003) · Zbl 1051.65103
[37] Pan, T. W.; Glowinski, R., A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations, Comput Fluid Dyn J, 9, 28-42, (2000)
[38] Quarteroni, A.; Saleri, F.; Veneziani, A., Factorization methods for the numerical approximation of Navier-Stokes equations, Comput Methods Appl Mech Eng, 188, 505-526, (1998) · Zbl 0976.76044
[39] Rajani, B. N.; Kandasamy, A.; Majumdar, S., Numerical simulation of laminar flow past a circular cylinder, Appl Math Modell, 33, 1228-1247, (2009) · Zbl 1168.76305
[40] Rangan, A., Deferred correction methods for low index differential algebraic equations, BIT numerical mathematics, 43, 1-18, (2003), Kluwer Academic Publishers
[41] Ruuth, S. J., Implicit-explicit methods for reaction-diffusion problems in pattern formation, J Math Biol, 34, 148-176, (1995) · Zbl 0835.92006
[42] Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R., Benchmark computations of laminar flow around a cylinder, 547-566, (1996), Vieweg+ Teubner Verlag · Zbl 0874.76070
[43] Shankar, P. N.; Deshpande, M. D., Fluid mechanics in the driven cavity, Ann Rev Fluid Mech, 32, 93-136, (2000) · Zbl 0988.76006
[44] Simo, J. C.; Armero, F., Unconditional stability and long-term behaviour of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput Methods Appl Mech Eng, 111, 111-154, (1993) · Zbl 0846.76075
[45] Stetter, H. J., The defect corection principle and discretization methods, Numerische Mathematik, 29, 425-443, (1978), Springer · Zbl 0362.65052
[46] Temam, R., Navier-Stokes equations: theory and numerical analysis, 407, (2001), AMS Chelsea Publishing Providence, Rhode Island
[47] Tiesinga, G.; Wubs, F. B.; Veldman, A. E.P., Bifurcation analysis of incompressible flow in a driven cavity by the Newton-Picard method, J Comput Appl Math, 140, 751-772, (2001) · Zbl 1063.76040
[48] Turek, S., A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: from fully implicit non-linear schemes to semi-implicit projection methods, Int J Numer Methods Fluids, 22, 987-1011, (1996) · Zbl 0864.76052
[49] Turek, S., Efficient solvers for incompressible flow problems: an algorithmic and computational approach, Lecture Notes in Computational Science and Engineering, 358, (1999), Springer-Verlag Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.