×

Configurational balance and entropy sinks. (English) Zbl 1141.74006

Summary: For evolutionary processes of material remodelling and growth, a comparison is drawn between a conventional formulation and one that postulates the existence of additional balance laws for the configurational forces.

MSC:

74A15 Thermodynamics in solid mechanics
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Coleman BD and Gurtin ME (1967). Thermodynamics with internal state variables. J Chem Phys 47(2): 597–613 · doi:10.1063/1.1711937
[2] Cowin SC and Hegedus DH (1976). Bone remodeling I: theory of adaptive elasticity. J Elast 6: 313–326 · Zbl 0335.73028 · doi:10.1007/BF00041724
[3] Di Carlo A (2005) Surface and bulk growth unified. In: Steinmann P, Maugin GA (eds) Mechanics of material forces. Advances in mechanics and mathematics, vol 11. Springer, pp 53–64 · Zbl 1192.74022
[4] Di Carlo A and Quiligotti S (2002). Growth and balance. Mech Res Commun 29: 449–456 · Zbl 1056.74005 · doi:10.1016/S0093-6413(02)00297-5
[5] Epstein M (2005) Self-driven continuous dislocations and growth. In: Steinmann P, Maugin GA (eds) Mechanics of material forces. Springer, pp 129–139 · Zbl 1192.74025
[6] Epstein M and Maugin GA (1990). The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech 83: 127–133 · Zbl 0714.73029 · doi:10.1007/BF01172974
[7] Epstein M and Maugin GA (2000). Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16: 951–978 · Zbl 0979.74006 · doi:10.1016/S0749-6419(99)00081-9
[8] Epstein M and Śniatycki J (2005). Non-local inhomogeneity and Eshelby entities. Phil Mag 85(33–35): 3939–3955 · doi:10.1080/14786430500362603
[9] Eshelby JD (1951). The force on an elastic singularity. Phil Trans Roy Soc London A 244: 87–112 · Zbl 0043.44102 · doi:10.1098/rsta.1951.0016
[10] Garikipati K, Arruda EM, Grosh K, Narayanan H and Calve S (2004). A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52(7): 1595–1625 · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[11] Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K and Calve S (2006). Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J Mech Phys Solids 54(7): 1493–1515 · Zbl 1120.74633 · doi:10.1016/j.jmps.2005.11.011
[12] Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer-Verlag · Zbl 0951.74003
[13] Noll W (1967). Materially uniform simple bodies with inhomogeneities. Arch Rational Mech Anal 27: 1–32 · Zbl 0168.45701 · doi:10.1007/BF00276433
[14] Podio-Guidugli P (2002). Configurational forces: are they needed?. Mech Res Commun 29: 513–519 · Zbl 1071.74004 · doi:10.1016/S0093-6413(02)00295-1
[15] Segev R and Epstein M (1996). On theories of growing bodies. In: Batra, RC and Beatty, MF (eds) Contemporary research in the mechanics and mathematics of materials, pp 119–130. CIMNE, Barcelona
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.