×

The \(q\)-ad hoc hub location problem for multi-modal networks. (English) Zbl 1390.90371

Summary: This research proposes a spatial optimization problem over a multi-modal transportation network, termed the \(q\)-Ad-hoc hub location problem (AHLP), to utilize alternative hubs in an ad-hoc manner in the wake of a hub outage. The model aims to reorganize the spatial structure of disrupted networks: unaffected hubs are utilized as ad-hoc hubs through which alternative routes connect supply and demand nodes. As a case study, the AHLP is applied to a multi-modal freight transport system connecting international destinations with the United States. The models are utilized to establish a new ranking methodology for critical infrastructure by combining metrics capturing nodal criticality and network resilience and recuperability. The results show that the AHLP is both an effective and practical recovery approach for a hub network to respond to the potential disruptions of hubs and a novel methodology for ranking critical infrastructure.

MSC:

90B80 Discrete location and assignment
90B06 Transportation, logistics and supply chain management
90B10 Deterministic network models in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akhtar, J; Bjørnskau, J; Veisten, K, Assessing security measures reducing terrorist risk: inverse ex post cost-benefit and cost-effectiveness analyses of Norwegian airports and seaports, J Transp Secur, 3, 179-195, (2010) · doi:10.1007/s12198-010-0046-z
[2] Altshuler AA, Luberoff DE (2003) Mega-projects: the changing politics of urban public investment. Brookings Institution Press and the Lincoln Institute of Land Policy, Washington DC
[3] Alumur, SA; Kara, BY, Network hub location problems: the state of the art, Eur J Oper Res, 190, 1-21, (2008) · Zbl 1146.90455 · doi:10.1016/j.ejor.2007.06.008
[4] Alumur, SA; Kara, BY; Karasan, OE, Multimodal hub location and hub network design, Omega, 40, 927-939, (2012) · doi:10.1016/j.omega.2012.02.005
[5] An, Y; Zhang, Y; Zeng, B, The reliable hub-and-spoke design problem: models and algorithms, Transp Res B, 77, 103-122, (2015) · doi:10.1016/j.trb.2015.02.006
[6] Bednarek JD (2001) America’s airports: airfield development, 1918-1947, 1st edn. Texas A&M University Press, College Station
[7] Campbell, JF, Integer programming formulations of discrete hub location problems, Eur J Oper Res, 72, 387-405, (1994) · Zbl 0790.90048 · doi:10.1016/0377-2217(94)90318-2
[8] Campbell, JF; O’Kelly, ME, Twenty-five years of hub location research, Transp Sci, 46, 153-169, (2012) · doi:10.1287/trsc.1120.0410
[9] Carello, G; Della Croce, F; Ghirardi, M; Tadei, R, Solving the hub location problem in telecommunication network design: a local search approach, Networks, 44, 94-105, (2004) · Zbl 1055.90044 · doi:10.1002/net.20020
[10] Caschili, S; Reggiani, A; Medda, F, Resilience and vulnerability of spatial economic networks, Netw Spat Econ, 15, 205-210, (2015) · doi:10.1007/s11067-015-9283-9
[11] Cats, O; Jenelius, E, Dynamic vulnerability analysis of public transport networks: mitigation effects of real-time information, Netw Spat Econ, 14, 435-463, (2014) · Zbl 1338.90076 · doi:10.1007/s11067-014-9237-7
[12] Church, RL; Scaparra, MP; Middleton, RS, Identifying critical infrastructure: the Median and covering facility interdiction problems, Ann Assoc Am Geogr, 94, 491-502, (2004) · doi:10.1111/j.1467-8306.2004.00410.x
[13] Cole Smith, J; Churlzu, L; Sudargho, F, Survivable network design under optimal and heuristic interdiction scenarios, J Glob Optim, 38, 181-199, (2007) · Zbl 1179.90056 · doi:10.1007/s10898-006-9067-3
[14] Crainic, TG; Laporte, G, Planning models for freight transportation, Eur J Oper Res, 97, 409-438, (1997) · Zbl 0919.90055 · doi:10.1016/S0377-2217(96)00298-6
[15] Department of the Army (2000a) Army Field Manual, 3-01-11: Appendix A-ADA Employment Principles, Guidelines, and Priorities
[16] Department of the Army (2000b) Army Field Manual, FM 44-100: Chapter 4- Fundamentals of Army Air and Missile Defense Operations. http://www.globalsecurity.org/space/library/policy/army/fm/44-100/ch4.htm. Accessed 15 June 2014 · Zbl 0927.90069
[17] Du, L; Peeta, S, A stochastic optimization model to reduce expected post-disaster response time through pre-disaster investment decisions, Netw Spat Econ, 14, 271-295, (2014) · Zbl 1332.90055 · doi:10.1007/s11067-013-9219-1
[18] Fotuhi, F., and N. Huynh. (2016). “Reliable intermodal freight network expansion with demand uncertainties and network disruptions.” Netw Spat Econ doi:10.1007/s11067-016-9331-0. · Zbl 1380.90040
[19] Freight Analysis Framework (FAF) (2013) Version 3: Freight Analysis Framework. 20\^{}{th} January, 2013. http://faf.ornl.gov/fafweb/Extraction0.aspx. Accessed 15 June 2014
[20] Gourveia, L; Patrício, P; Sousa, A, Hop-constrained node survivable network design: an application to MPLS over WDM, Netw Spat Econ, 8, 3-21, (2008) · Zbl 1172.90339 · doi:10.1007/s11067-007-9038-3
[21] Haghani, A; Oh, S, Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations, Transp Res A, 30, 231-250, (1996)
[22] Hall P, Hesse M (2012) Cities, regions and flows. Routledge, New York
[23] Haveman JD, Shatz HJ (2006) Protecting the nation’s seaports: Balancing security and cost. Public Policy Institute of California · Zbl 1262.90028
[24] Hesse, M; Rodrigue, J-P, The transport geography of logistics and freight distribution, J Transp Geogr, 12, 171-184, (2004) · doi:10.1016/j.jtrangeo.2003.12.004
[25] Johnston, M; Lee, H; Modiano, E, A robust optimization approach to backup network design with random failures, IEEE/ACM Trans Networking, 23, 1216-1228, (2015) · doi:10.1109/TNET.2014.2320829
[26] Kim H (2012) \(P\)-hub protection models for survivable hub network design. J Geogr Syst 14(4):437-461
[27] Kim, H; O’Kelly, ME, Reliable \(p\)-hub location problems in telecommunication networks, Geogr Anal, 41, 283-306, (2009) · doi:10.1111/j.1538-4632.2009.00755.x
[28] Kim, H; Kim, C; Chun, Y, Network reliability and resilience of rapid transit systems, Prof Geogr, 68, 53-65, (2016) · doi:10.1080/00330124.2015.1028299
[29] Kumar S, Rathy RK, Pandey D (2009) Design of an ad-hoc network model for disaster recovery scenario using various routing protocols. In: Proceedings of the International Conference on Advances in Computing, Communication and Control, pp 100-105
[30] Lei, TL, Identifying critical facilities in hub-and-spoke networks: a hub interdiction Median problem, Geogr Anal, 45, 105-122, (2013) · doi:10.1111/gean.12006
[31] Lei, TL; Tong, D, Hedging against service disruptions: an expected Median location problem with site-dependent failure probabilities, J Geogr Syst, 15, 491-512, (2013) · doi:10.1007/s10109-012-0175-y
[32] Lewis TG (2006) Critical infrastructure protection in homeland security: defending a networked nation. John Wiley & Sons, New Jersey · doi:10.1002/0471789542
[33] Li, Y; Kim, H, Assessing survivability of the Beijing subway system, Int J Geospatial Environ Res, 1, 3, (2014)
[34] Martín, JC; Voltes-Dorta, A, Pitfalls in measuring hubbing in airline networks, theoretical evidence, Netw Spat Econ, 8, 161-181, (2008) · Zbl 1162.90382 · doi:10.1007/s11067-007-9051-6
[35] Matisziw, TC; Murray, AT; Grubesic, TH, Strategic network restoration, Netw Spat Econ, 10, 345-361, (2010) · Zbl 1262.90028 · doi:10.1007/s11067-009-9123-x
[36] McMasters, AW; Mustin, TM, Optimal interdiction of a supply network, Nav Res Logist, 17, 261-268, (1970) · Zbl 0222.90017 · doi:10.1002/nav.3800170302
[37] Murray A, Grubesic TH (2007) Critical infrastructure: reliability and vulnerability. Springer, Berlin · doi:10.1007/978-3-540-68056-7
[38] Nair, R; Avetisyan, H; Miller-Hooks, E, Resilience framework for ports and other intermodal components, Transp Res Rec, 2166, 54-65, (2010) · doi:10.3141/2166-07
[39] National Research Council (2008) The Potential impacts of climate change on U.S. transportation. Transportation Research Board Special Report 290. http://onlinepubs.trb.org/onlinepubs/sr/sr290.pdf. Accessed 15 June 2014 · Zbl 0800.90772
[40] O’Kelly, ME, Network hub structure and resilience, Netw Spat Econ, 15, 235-251, (2015) · doi:10.1007/s11067-014-9267-1
[41] O’Kelly, ME, The location of interacting hub facilities, Transp Sci, 20, 92-106, (1986) · doi:10.1287/trsc.20.2.92
[42] O’Kelly, ME, Activity levels at hub facilities in interacting networks, Geogr Anal, 18, 343-356, (1986) · doi:10.1111/j.1538-4632.1986.tb00106.x
[43] O’Kelly, ME, A quadratic integer program for the location of interacting hub facilities, Eur J Oper Res, 32, 393-404, (1987) · Zbl 0627.90030 · doi:10.1016/S0377-2217(87)80007-3
[44] O’Kelly, ME; Bryan, D; Skorin-Kapov, D; Skorin-Kapov, J, Hub network design with single and multiple allocation: a computational study, Locat Sci, 4, 125-138, (1996) · Zbl 0927.90069 · doi:10.1016/S0966-8349(96)00015-0
[45] Peng, P; Snyder, LV; Lim, A; Liu, Z, Reliable logistics networks design with facility disruptions, Transp Res B, 45, 1190-1211, (2011) · doi:10.1016/j.trb.2011.05.022
[46] Phillips CA (1992) The network destruction problem. Sandia National Laboratories, Albuquerque, NM (SAND-92-0186C)
[47] Qu, Y; Bektaş, T; Bennell, J, Sustainability SI: multimode multicommodity network design model for intermodal freight transportation with transfer and emission costs, Netw Spat Econ, 16, 303-329, (2016) · Zbl 1364.90048 · doi:10.1007/s11067-014-9227-9
[48] Research and Innovative Technology Administration (RITA) (2013) Bureau of Transportation Statistics. http://transborder.bts.gov/programs/international/transborder/TBDR_TS/TBDR_TS_Index.html. Accessed 15 Dec 2014
[49] Ryerson, MS; Churchill, A, Aircraft rerouting due to abrupt facility outages: a case study of the 2011 great Tōhoku earthquake, Transp Res Rec, 2336, 27-35, (2013) · doi:10.3141/2336-04
[50] Ryerson, MS; Kim, H, Integrating airline operational practices into passenger airline hub definition, J Transp Geogr, 31, 84-93, (2014) · doi:10.1016/j.jtrangeo.2013.05.013
[51] Shishebori, D; Snyder, LV; Jabalameli, MS, A reliable budget-constrained FL/ND problem with unreliable facilities, Netw Spat Econ, 14, 549-580, (2014) · Zbl 1338.90224 · doi:10.1007/s11067-014-9254-6
[52] Skorin-Kapov, D; Skorin-Kapov, J; O’Kelly, ME, Tight linear programming relaxations of uncapacitated p-hub Median problems, Eur J Oper Res, 94, 582-593, (1996) · Zbl 0947.90602 · doi:10.1016/0377-2217(95)00100-X
[53] Soni, S; Gupta, R; Pirkul, H, Survivable network design: the state of the art, Inf Syst Front, 1, 303-315, (1999) · doi:10.1023/A:1010058513558
[54] Taylor B, Kaufman P (2009) Protecting America’s ports. Natl Inst Justice J 262 · Zbl 1146.90455
[55] Tsiotas, D; Polyzos, S, Analyzing the maritime transportation system in Greece: a complex network approach, Netw Spat Econ, 15, 981-1010, (2015) · Zbl 1332.90154 · doi:10.1007/s11067-014-9278-y
[56] Vidović, M; Zečević, S; Kilibarda, M; Vlajić, N; Tadić, S, The p-hub model with hub-catchment areas, existing hubs, and simulation: a case study of Serbian intermodal terminals, Netw Spat Econ, 11, 295-314, (2011) · doi:10.1007/s11067-009-9126-7
[57] Wood, RK, Deterministic network interdiction, Math Comput Model, 17, 1-18, (1993) · Zbl 0800.90772 · doi:10.1016/0895-7177(93)90236-R
[58] Yates, J; Sanjeevi, S, Assessing the impact of vulnerability modeling in the protection of critical infrastructure, J Geogr Syst, 14, 415-435, (2012) · doi:10.1007/s10109-012-0161-4
[59] Zussman, G; Segall, A, Energy efficient routing in ad hoc disaster recovery network, IEEE INFOCOM, 2003, 682-691, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.