×

Multiscale modeling and simulation of single-crystal mgo through an atomistic field theory. (English) Zbl 1236.74052

Summary: The present work is concerned with the application of an atomistic-continuum field theory (AFT) in modeling and simulation of crystalline materials. Atomistic formulation of the field theory and its finite element implementation are introduced. Single-crystal MgO under mechanical loading is modeled and simulated. With a coarse mesh, the field theory is shown to be able to simulate dynamic and nonlinear behavior of multi-atom crystalline materials without the need of additional numerical treatments. Reducing the finite element mesh to the atomic scale, i.e., the finite element size is equal to the size of the primitive unit cell, atomic-scale critical phenomena, including dislocations nucleation and motion, have been successfully reproduced.

MSC:

74E15 Crystalline structure
74A25 Molecular, statistical, and kinetic theories in solid mechanics

Software:

DL_POLY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures, (2000) · Zbl 0959.74001
[2] Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E.: Concurrent coupling of length scales: methodology and application, Phy. rev. B 60, 2391 (1999)
[3] Cai, W.; Koning, M.; Bultatov, V. V.; Yip, S.: Minimizing boundary reflections in coupled-domain simulations, Phys. rev. Lett., 3213 (2000)
[4] Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces, J. chem. Phys. 124, 054113-1 (2006)
[5] Chen, Y.; Lee, J. D.: Atomistic formulation of an multiscale theory for nano/micro physics, Philos. mag. 85, 4095 (2005)
[6] Chen, Y.; Lee, J. D.: Conservation laws at nano/micro scales, J. mech. Mater. struct. 1, 681 (2006)
[7] Chen, Y.; Lee, J. D.; Eskandarian, A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation, Int. J. Eng. sci. 41, 61 (2003) · Zbl 1211.74014 · doi:10.1016/S0020-7225(02)00141-6
[8] Chen, Y.; Lee, J. D.; Lei, Y.; Xiong, L.: A multiscale field theory: nano/micro materials, Book chapter (invited contribution) on multiscaling in molecular and continuum mechanics 23 (2006)
[9] Chen, Y.; Lee, J. D.; Xiong, L.: Stresses and strains at nano/micro scales, J. mech. Mater. struct. 1, 705 (2006)
[10] Curtin, W. A.; Miller, R. E.: Atomistic/continuum coupling in computational materials science, Modell. simulat. Mater. sci. Eng. 11, R33 (2003)
[11] Eringen, A. C.: Theory of micropolar continua, Developments in mechanics 3 (1965)
[12] Eringen, A. C.: Microcontinuum field theories – I: Foundations and solids, (1999) · Zbl 0953.74002
[13] Eringen, A. C.; Suhubi, E. S.: Nonlinear theory of simple micro-elastic solids – I, Int. J. Eng. sci. 2, 189 (1964) · Zbl 0138.21202 · doi:10.1016/0020-7225(64)90004-7
[14] Grimes, R. W.: Solution of mgo, cao, and tio2 in \(\alpha \)-al2o3, J. am. Ceram. soc. 77, 378 (1994)
[15] Hardy, R. J.: Energy-flux operator for a lattice, Phy. rev. 132, 168 (1963) · Zbl 0151.46006
[16] Hardy, R. J.: Formulas for determining local properties in molecular-dynamics simulations: shock waves, J. chem. Phys. 76, No. 1, 622 (1982)
[17] Irvine, J. H.; Kirkwood, J. G.: The statistical theory of transport processes. IV. the equations of hydrodynamics, J. chem. Phys. 18, 817 (1950)
[18] Li, X.; E, W.: Multiscale modeling of the dynamics of solids at finite temperature, J. mech. Phys. solids 53, 1650 (2005) · Zbl 1120.74313 · doi:10.1016/j.jmps.2005.01.008
[19] Mindlin, R. D.: Microstructure in linear elasticity, Arch. rat. Mech. anal. 16, 51 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[20] Mindlin, R. D.; Eshel, N. N.: On first strain-gradient theories in linear elasticity, Int. J. Solids struct. 4, 109 (1968) · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[21] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W.: Meshfree and finite element nodal integration methods, Int. J. Numer. meth. Eng. 74, 416-446 (2008) · Zbl 1159.74456 · doi:10.1002/nme.2181
[22] Rudd, R. E.; Broughton, J. Q.: Coarse-grained molecular dynamics and the atomic limit of finite elements, Phy. rev. B 58, R5893 (1998)
[23] Smith, W., Forester, T.R., 2001. The DL-POLY User Manual.
[24] Tadmor, E. B.; Ortiz, M.; Phillips, R.: Quasicontinuum analysis of defects in solids, Philos. mag. A 73, 1529 (1996)
[25] To, A. C.; Li, S.: Perfectly matched multiscale simulations, Phy. rev. B 72, 035414 (2005)
[26] Toupin, R. A.: Elastic materials with couple-stresses, Arch. rat. Mech. anal. 11, 385 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[27] Wagner, G. J.; Liu, W. K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. comput. Phys. 190, 249 (2003) · Zbl 1169.74635 · doi:10.1016/S0021-9991(03)00273-0
[28] Xiao, S.; Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics, Comput. meth. Appl. mech. Eng. 193 (2004) · Zbl 1079.74509 · doi:10.1016/j.cma.2003.12.053
[29] Xiong, L.; Chen, Y.; Lee, J. D.: Atomistic measure of the strength of mgo nanorods, Theoret. appl. Fract. mech. 46, 202 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.