×

zbMATH — the first resource for mathematics

Effect of numerical integration on meshless methods. (English) Zbl 1229.65204
Summary: In this paper, we present the effect of numerical integration on meshless methods with shape functions that reproduce polynomials of degree \(k\geqslant 1\). The meshless method was used on a second order Neumann problem and we derived an estimate for the energy norm of the error between the exact solution and the approximate solution from the meshless method under the presence of numerical integration. This estimate was obtained under the assumption that the numerical integration scheme satisfied a form of Green’s formula. We also indicated how to obtain numerical integration schemes satisfying this property.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babuška, I.; Aziz, A.K., Survey lectures on the mathematical foundations of the finite element method, (), 3-345
[2] Babuška, I.; Banerjee, U.; Osborn, J., Survey of meshless and generalized finite element methods: a unified approach, Acta numer., 12, 1-125, (2003) · Zbl 1048.65105
[3] Babuška, I.; Banerjee, U.; Osborn, J., On the approximability and the selection of particle shape functions, Numer. math., 96, 601-640, (2004) · Zbl 1054.65116
[4] Babuška, I.; Banerjee, U.; Osborn, J.; Li, Q., Quadrature for meshless methods, Int. J. numer. methods engrg., 76, 1434-1470, (2008) · Zbl 1195.65165
[5] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. methods appl. mech. engrg., 139, 49-74, (1996) · Zbl 0918.73329
[6] Bochev, P.; Lehoucq, R., On the finite element solution of the pure Neumann problem, SIAM rev., 47, 1, 50-66, (2005) · Zbl 1084.65111
[7] Brenner, S.C.; Scott, L.R., The mathematical theory of finite element methods, (2007), Springer-Verlag New York
[8] Carpinteri, A.; Ferro, G.; Ventura, G., The partition of unity quadrature in meshless methods, Int. J. numer. methods engrg., 54, 987-1006, (2002) · Zbl 1028.74047
[9] Carpinteri, A.; Ferro, G.; Ventura, G., The partition of unity quadrature in element free crack modelling, Comput. struct., 81, 1783-1794, (2003)
[10] Chen, J.S.; Hu, W.; Puso, M., Orbital hp-clouds for solving schrodinger equations in quanton mechanics, Comput. methods appl. mech. engrg., 196, 3693-3705, (2007) · Zbl 1173.81301
[11] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conformal nodal integration for a Galerkin mesh-free method, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[12] Chen, J.S.; Yoon, S.; Wu, C.T., Non-linear version of stabilized conforming nodal integration Galerkin mesh-free methods, Int. J. numer. methods engrg., 53, 2587-6515, (2002) · Zbl 1098.74732
[13] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[14] De, S.; Bathe, K.J., The method of finite spheres, Comput. mech., 25, 329-345, (2000) · Zbl 0952.65091
[15] De, S.; Bathe, K.J., The method of finite squares with improved numerical integration, Comput. struct., 79, 2183-2196, (2001)
[16] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. mech., 23, 219-230, (1999) · Zbl 0963.74076
[17] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. methods appl. mech. engrg, 190, 6157-6181, (2001) · Zbl 0992.65119
[18] Li, S.; Liu, W.K., Meshfree particle methods, (2004), Springer · Zbl 1073.65002
[19] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[20] Melenk, J.M., On approximation in meshless methods, () · Zbl 0997.65128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.