zbMATH — the first resource for mathematics

\(hp\)-cloud approximation of the Dirac eigenvalue problem: the way of stability. (English) Zbl 1349.65601
Summary: We apply \(hp\)-cloud method to the radial Dirac eigenvalue problem. The difficulty of occurrence of spurious eigenvalues among the genuine ones in the computation is resolved. The method of treatment is based on assuming \(hp\)-cloud Petrov-Galerkin scheme to construct the weak formulation of the problem which adds a consistent diffusivity to the variational formulation. The size of the artificially added diffusion term is controlled by a stability parameter (\(\tau\)). The derivation of \(\tau\) assumes the limit behavior of the eigenvalues at infinity. The parameter \(\tau\) is applicable for generic basis functions. This is combined with the choice of appropriate intrinsic enrichments in the construction of the cloud shape functions.

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI arXiv
[1] Ackad, E.; Horbatsch, M., Numerical solution of the Dirac equation by a mapped Fourier grid method, J. Phys. A, Math. Gen., 38, 3157-3171, (2005) · Zbl 1065.81036
[2] Almanasreh, H.; Salomonson, S.; Svanstedt, N., Stabilized finite element method for the radial Dirac equation, J. Comp. Physiol., 236, 426-442, (2013) · Zbl 1286.34119
[3] Almeida, R. C.; Silva, R. S., A stable Petrov-Galerkin method for convection-dominated problems, Comput. Methods Appl. Mech. Eng., 140, (1997) · Zbl 0899.76258
[4] Atluri, S. N.; Shen, S., The meshless local Petrov-Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods, Comput. Model. Eng. Sci., 3, 11-51, (2002) · Zbl 0996.65116
[5] Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element-element-free Galerkin method, Comput. Mech., 17, 186-195, (1995) · Zbl 0840.73058
[6] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47, (1996) · Zbl 0891.73075
[7] Brooks, A. N., A Petrov-Galerkin finite element formulation for convection dominated flows, (1981), California Institute of Technology California, Thesis for the degree of Doctor of Philosophy
[8] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, (1982) · Zbl 0497.76041
[9] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Eng., 50, 435-466, (2001) · Zbl 1011.74081
[10] Chen, J. S.; Hu, W.; Puso, M. A., Orbital hp-clouds for solving Schrödinger equation in quantum mechanics, Comput. Methods Appl. Mech. Eng., 196, 3693-3705, (2007) · Zbl 1173.81301
[11] Ciftci, H.; Hall, R. L.; Saad, N., Iterative solutions to the Dirac equation, Phys. Rev. A, 72, (2005)
[12] De Sampaio, P. A.B., A Petrov-Galerkin/modified operator formulation for convection-diffusion problems, Int. J. Numer. Methods Eng., 30, (1990) · Zbl 0714.76077
[13] Dolbow, J.; Belytschko, T., An introduction to programming the meshless element free Galerkin method, Arch. Comput. Methods Eng., 5, 207-241, (1998)
[14] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23, 219-230, (1999) · Zbl 0963.74076
[15] Duarte, C. A.; Oden, J. T., \(H - p\) clouds—an \(h - p\) meshless method, Numer. Methods Partial Differ. Equ., 12, 673-705, (1996) · Zbl 0869.65069
[16] Duarte, C. A.; Oden, J. T., An \(h - p\) adaptive method using clouds, Comput. Methods Appl. Mech. Eng., 139, 237-262, (1996) · Zbl 0918.73328
[17] Fischer, C. F.; Parpia, F. A., Accurate spline solutions of the radial Dirac equation, Phys. Lett. A, 179, 198-204, (1993)
[18] Fries, T.; Matthies, H., A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods, (2004), Institute of Scientific Computing, Technical University Braunschweig Brunswick, Germany
[19] Fries, T.; Matthies, H., Classification and overview of meshfree methods, (2004), Institute of Scientific Computing, Technical University Braunschweig Brunswick, Germany
[20] Garcia, O.; Fancello, E. A.; de Barcellos, C. S.; Duarte, C. A., hp-clouds in Mindlin’s thick plate model, Int. J. Numer. Methods Eng., 47, 1381-1400, (2000) · Zbl 0987.74067
[21] Griesemer, M.; Lutgen, J., Accumulation of discrete eigenvalues of the radial Dirac operator, J. Funct. Anal., 162, (1999) · Zbl 0926.34074
[22] Hehre, W. J.; Radom, L.; Schleyer, P.; Pople, J., Ab initio molecular orbital theory, (1986), John Willey & Sons New York
[23] Hill, W. T.; Lee, C. H., Light-matter interaction: atoms and molecules in external fields and nonlinear optics, (2007), Wiley-VCH Verlag GmbH & Co. KGaA Weinheim
[24] Huerta, A.; Fernández-Méndez, S., Coupling element free Galerkin and finite element methods, (2000), ECCOMAS Barcelona
[25] Huerta, A.; Fernández-Méndez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng., 48, 1615-1636, (2000) · Zbl 0976.74067
[26] Idelsohn, S.; Nigro, N.; Storti, M.; Buscaglia, G., A Petrov-Galerkin formulation for advection-reaction-diffusion problems, Comput. Methods Appl. Mech. Eng., 136, (1996) · Zbl 0896.76042
[27] Johnson, W. R.; Blundell, S. A.; Sapirstein, J., Finite basis sets for the Dirac equation constructed from B splines, Phys. Rev. A, 37, 307-315, (1988)
[28] Krongauz, Y.; Belytscko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. Methods Appl. Mech. Eng., 131, 133-145, (1996) · Zbl 0881.65098
[29] Le, C. V., Novel numerical procedures for limit analysis of structures: mesh-free methods and mathematical programming, (2009), University of Sheffield England, PhD thesis
[30] Lin, H.; Atluri, S. N., Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems, Comput. Model. Eng. Sci., 1, 45-60, (2000)
[31] Lindgren, I.; Salomonson, S.; Åsén, B., The covariant-evolution-operator method in bound-state QED, Phys. Rep., 389, 161-261, (2004)
[32] Liu, G. R., Mesh free methods: moving beyond the finite element method, (2003), CRC Press · Zbl 1031.74001
[33] Lu, Y. Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., 113, 397-414, (1994) · Zbl 0847.73064
[34] de, P.; Mendonça, T. R.; de Barcellos, C. S.; Duarte, A., Investigations on the hp-cloud method by solving Timoshenko beam problems, Comput. Mech., 25, 286-295, (2000) · Zbl 0987.74070
[35] Mohr, P. J.; Plunien, G.; Soff, G., QED corrections in heavy atoms, Phys. Rep., 293, 227-369, (1998)
[36] Mur, G., On the causes of spurious solutions in electromagnetics, Electromagnetics, 22, 357-367, (2002)
[37] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., 79, 763-813, (2008) · Zbl 1152.74055
[38] Noguchi, H.; Kawashima, T.; Miyamura, T., Element free analyses of shell and spatial structures, Int. J. Numer. Methods Eng., 47, 1215-1240, (2000) · Zbl 0970.74079
[39] Pestka, G., Spurious roots in the algebraic Dirac equation, Chem. Phys. Lett., 376, 659-661, (2003) · Zbl 1055.81016
[40] Rosenberg, L., Virtual-pair effects in atomic structure theory, Phys. Rev. A, 39, 4377-4386, (1989)
[41] Schroeder, W.; Wolf, I., The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems, IEEE Trans. Microw. Theory Tech., 42, 644-653, (1994)
[42] Shabaev, V. M., Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms, Phys. Rep., 356, 119-228, (2002) · Zbl 1001.81090
[43] Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.; Plunien, G.; Soff, G., Dual kinetic balance approach to basis-set expansions for the Dirac equation, Phys. Rev. Lett., 93, (2004)
[44] Thaller, B., The Dirac equation, (1993), Springer-Verlag Berlin · Zbl 0881.47021
[45] Tupitsyn, I. I.; Shabaev, V. M., Spurious states of the Dirac equation in a finite basis set, Opt. Spektrosk., 105, 203-209, (2008)
[46] You, Y.; Chen, J. S.; Lu, H., Filters, reproducing kernel, and adaptive meshfree method, Comput. Mech., 31, 316-326, (2003) · Zbl 1038.74681
[47] Zhang, X.; Liu, X.; Lu, M.; Chen, Y., Imposition of essential boundary conditions by displacement constraint equations in meshless methods, Commun. Numer. Methods Eng., 17, 165-178, (2001) · Zbl 1102.74329
[48] Zhao, S., On the spurious solutions in the high-order finite difference methods for eigenvalue problems, Comput. Methods Appl. Mech. Eng., 196, 5031-5046, (2007) · Zbl 1173.74462
[49] Zuppa, C., Modified Taylor reproducing formulas and \(h - p\) clouds, Math. Comput., 77, 243-264, (2008) · Zbl 1151.41025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.