×

Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators. (English) Zbl 1383.35068

Summary: We prove a scale-free, quantitative unique continuation principle for functions in the range of the spectral projector \(\chi_{(-\infty,E]}(H_L)\) of a Schrödinger operator \(H_L\) on a cube of side \(L\in \mathbb{N}\), with bounded potential. Previously, such estimates were known only for individual eigenfunctions and for spectral projectors \(\chi_{(E-\gamma,E]}(H_L)\) with small \(\gamma\). Such estimates are also called, depending on the context, uncertainty principles, observability estimates, or spectral inequalities. Our main application of such an estimate is to find lower bounds for the lifting of eigenvalues under semidefinite positive perturbations, which in turn can be applied to derive a Wegner estimate for random Schrödinger operators with nonlinear parameter-dependence. Another application is an estimate of the control cost for the heat equation in a multiscale domain in terms of geometric model parameters. Let us emphasize that previous uncertainty principles for individual eigenfunctions or spectral projectors onto small intervals were not sufficient to study such applications.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35P15 Estimates of eigenvalues in context of PDEs
35Q82 PDEs in connection with statistical mechanics
35R60 PDEs with randomness, stochastic partial differential equations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q15 Perturbation theories for operators and differential equations in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] 10.1080/03605302.2012.736912 · Zbl 1273.58009
[2] ; Barbaroux, Helv. Phys. Acta, 70, 16 (1997)
[3] 10.1007/s00222-004-0435-7 · Zbl 1084.82005
[4] 10.1090/S0002-9947-96-01579-6 · Zbl 0868.35081
[5] 10.1007/PL00005555 · Zbl 1042.82024
[6] 10.1155/S1073792803202099 · Zbl 1022.47028
[7] 10.1215/S0012-7094-07-14032-8 · Zbl 1134.81022
[8] 10.1080/03605302.2013.796380 · Zbl 1320.35118
[9] 10.1007/s00205-011-0445-8 · Zbl 1251.93040
[10] ; Escauriaza, Inverse problems: theory and applications. Contemp. Math., 333, 79 (2003)
[11] ; Fernández-Cara, Adv. Differential Equations, 5, 465 (2000) · Zbl 1007.93034
[12] ; Fursikov, Controllability of evolution equations. Lecture Notes Series, 34 (1996) · Zbl 0862.49004
[13] ; Germinet, Mathematical results in quantum mechanics, 79 (2008) · Zbl 1156.81018
[14] 10.4171/JEMS/356 · Zbl 1267.82066
[15] ; Germinet, J. Eur. Math. Soc. (JEMS), 9, 577 (2007)
[16] ; Germinet, Rev. Math. Phys., 27 (2015)
[17] 10.1016/0022-247X(85)90313-0 · Zbl 0579.49029
[18] ; Helm, J. Math. Phys., 48 (2007)
[19] 10.1007/s00220-005-1460-0 · Zbl 1121.47006
[20] ; Jerison, Harmonic analysis and partial differential equations, 223 (1999)
[21] ; Mathematics of aperiodic order. Progress in Mathematics, 309 (2015) · Zbl 1338.37005
[22] 10.1215/00127094-1272903 · Zbl 1226.35086
[23] 10.1007/PL00004521 · Zbl 0863.35069
[24] ; Kirsch, Mathematical results in quantum mechanics. Contemp. Math., 307, 171 (2002)
[25] 10.1007/s11005-010-0417-1 · Zbl 1198.35064
[26] ; Kirsch, Random Oper. Stochastic Equations, 6, 241 (1998)
[27] 10.1007/s00220-013-1795-x · Zbl 1281.47026
[28] ; Klein, Proc. Amer. Math. Soc., 144, 665 (2016)
[29] 10.1215/S0012-7094-98-09111-6 · Zbl 0947.35045
[30] 10.1051/cocv/2011168 · Zbl 1262.35206
[31] 10.1080/03605309508821097 · Zbl 0819.35071
[32] 10.1016/j.crma.2012.06.004 · Zbl 1246.93019
[33] 10.1016/j.jde.2004.05.007 · Zbl 1053.93010
[34] 10.1137/S0363012904440654 · Zbl 1109.93009
[35] 10.3934/dcdsb.2010.14.1465 · Zbl 1219.93017
[36] 10.1007/BF02916756 · Zbl 1173.82331
[37] 10.1007/s00209-010-0756-8 · Zbl 1231.82030
[38] 10.1016/j.crma.2015.08.005 · Zbl 1327.47034
[39] 10.1016/j.jmaa.2004.03.059 · Zbl 1054.93028
[40] 10.3934/dcds.2015.35.6133 · Zbl 1332.93069
[41] 10.1007/s00205-014-0823-0 · Zbl 1319.35272
[42] ; Stollmann, Caught by disorder: bound states in random media. Progress in Mathematical Physics, 20 (2001) · Zbl 0983.82016
[43] 10.3934/cpaa.2017083 · Zbl 1419.34234
[44] 10.1007/s10955-015-1358-y · Zbl 1329.82062
[45] ; Täufer, J. Math. Phys., 57 (2016)
[46] ; Täufer, Spectral theory and mathematical physics. Oper. Theory Adv. Appl., 254, 223 (2016)
[47] 10.1016/j.jde.2007.06.019 · Zbl 1127.93016
[48] 10.4171/OWR/2007/06 · Zbl 1177.82070
[49] ; Veselić, Existence and regularity properties of the integrated density of states of random Schrödinger operators. Lecture Notes in Mathematics, 1917 (2008) · Zbl 1189.82004
[50] ; Ziemer, Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120 (1989) · Zbl 0692.46022
[51] ; Zuazua, Handbook of differential equations : evolutionary equations, III, 527 (2007) · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.