×

Field-driven magnetization reversal in a three-dimensional network of ferromagnetic ellipsoidal samples. (English) Zbl 1442.35030

Summary: The field-driven magnetization reversal in a three-dimensional network of ferromagnetic particles of ellipsoidal shape is analytically studied with an emphasis on coupling among the particles. The considered governing dynamics is the Landau-Lifshitz equation of micromagnetism which delineates the motion of magnetization inside the ferromagnetic medium. The analytical results explicate the stability and controllability (reversal) of the relevant configurations of magnetization which are established under the sufficient conditions. To reverse the magnetization direction in the particles, we use the control as a magnetic field generated by a dipole whose position and strength can be chosen.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Binns, C., Nanomagnetism: Fundamentals and Applications (2014), Oxford: Newnes, Oxford
[2] Bondarenko, PV, Boundary waves in ferromagnetically ordered two-dimensional arrays of magnetic dots, Tech. Phys. Lett., 40, 9, 813-815 (2014)
[3] Levy, JCS, Magnetic Structures of 2D and 3D Nanoparticles: Properties and Applications (2016), Boca Raton: CRC Press, Boca Raton
[4] Alouges, F.; Beauchard, K., Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var., 15, 676-711 (2009) · Zbl 1167.49003
[5] Agarwal, S.; Carbou, G.; Labbé, S.; Prieur, C., Control of a network of magnetic ellipsoidal samples, Math. Control Relat. Fields, 1, 2, 129-147 (2011) · Zbl 1231.93013
[6] Dubey, S.; Dwivedi, S., On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples, Differ. Equ. Dyn. Syst., 27, 1-3, 277-297 (2019) · Zbl 1414.93035
[7] Landau, L.; Lifschitz, E., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, 8, 153, 101-114 (1935)
[8] Brown, WF, Micromagnetics (1963), New York: Wiley, New York
[9] Aharoni, A., Introduction to the Theory of Ferromagnetism (2000), Oxford: Oxford University Press, Oxford
[10] Hubert, A.; Schäfer, R., Magnetic Domains: The Analysis of Magnetic Microstructures (1998), Berlin: Springer, Berlin
[11] Alouges, F.; Soyeur, A., On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal. Theory Methods Appl., 18, 1071-1084 (1992) · Zbl 0788.35065
[12] Carbou, G.; Fabrie, P., Time average in micromagnetism, J. Differ. Equ., 147, 383-409 (1998) · Zbl 0931.35170
[13] Boling, G.; Fengqiu, S., Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions, J. Math. Anal. Appl., 211, 326-346 (1997) · Zbl 0877.35122
[14] Guo, BL; Yang, GS, Existence and stability of static solutions of the Landau-Lifshitz equation with multi-direct effective field, Acta Math. Sin., 20, 6, 1135-1152 (2004) · Zbl 1087.35085
[15] Visintin, A., On Landau Lifschitz equation for ferromagnetism, Jpn. J. Appl. Math., 1, 69-84 (1985) · Zbl 0613.35018
[16] Carbou, G.; Fabrie, P., Regular solutions for Landau-Lifschitz equation in a bounded domain, Differ. Integr. Equ., 14, 213-229 (2001) · Zbl 1161.35421
[17] Carbou, G.; Fabrie, P., Regular solutions for Landau-Lifschitz equation in \(\mathbb{R}^3 \), Commun. Appl. Anal., 5, 17-30 (2001) · Zbl 1084.35519
[18] Yunmei, C.; Shijin, D.; Boling, G., Partial regularity for two dimensional Landau-Lifshitz equations, Acta Math. Sin., 14, 3, 423-432 (1998) · Zbl 0906.35025
[19] Abert, C.; Exl, L.; Selke, G.; Drews, A.; Schrefl, T., Numerical methods for the stray-field calculation: a comparison of recently developed algorithms, J. Magn. Magn. Mater., 326, 176-185 (2013)
[20] Ban̆as, LU; Bartels, S.; Prohl, A., A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 46, 1399-1422 (2008) · Zbl 1173.35321
[21] Labbé, S., Fast computation for large magnetostatic systems adapted for micromagnetism, SIAM J. Sci. Comput., 26, 2160-2175 (2005) · Zbl 1107.78016
[22] Carbou, G.; Labbé, S., Stability for static walls in ferromagnetic nanowires, Discrete Contin. Dyn. Syst. Ser. B, 6, 273-290 (2006) · Zbl 1220.82163
[23] Carbou, G.; Labbé, S., Stabilization of walls for nanowires of finite length, ESAIM Control Optim Calc. Var., 18, 1-21 (2012) · Zbl 1235.35029
[24] Carbou, G.; Labbé, S.; Trélat, E., Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst. Ser. S, 1, 51-59 (2008) · Zbl 1310.82059
[25] Labbé, S.; Privat, Y.; Trélat, E., Stability properties of steady-states for a network of ferromagnetic nanowires, J. Differ. Equ., 253, 1709-1728 (2012) · Zbl 1247.35173
[26] Dwivedi, S.; Dubey, S., On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field, Int. J. Appl. Comput. Math., 3, 1, 27-42 (2017) · Zbl 1392.35303
[27] Dwivedi, S.; Dubey, S., On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires, J. Appl. Anal., 23, 2, 89-100 (2017) · Zbl 1382.35286
[28] Carbou, G., Stability of static walls for a three-dimensional model of ferromagnetic material, J. Math. Pures Appl., 93, 183-203 (2010) · Zbl 1191.35052
[29] Osborn, JA, Demagnetizing factors of the general ellipsoid, Phys. Rev., 67, 351-357 (1945)
[30] Griffiths, DJ, Introduction to Electrodynamics (2008), San Francisco: Pearson Benjamin Cummings, San Francisco
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.