×

The cost of controlling strongly degenerate parabolic equations. (English) Zbl 1442.93016

Summary: We consider the typical one-dimensional strongly degenerate parabolic operator \(Pu = u_t - (x^\alpha u_x)_x\) with \(0 < x < \ell\) and \(\alpha \in (0, 2)\), controlled either by a boundary control acting at \(x = \ell\), or by a locally distributed control. Our main goal is to study the dependence of the so-called controllability cost needed to drive an initial condition to rest with respect to the degeneracy parameter \(\alpha \). We prove that the control cost blows up with an explicit exponential rate, as \(e^{C/((2- \alpha )^2 T)}\), when \(\alpha \rightarrow 2^-\) and/or \(T \rightarrow 0^+\). Our analysis builds on earlier results and methods (based on functional analysis and complex analysis techniques) developed by several authors such as Fattorini-Russel, Seidman, Güichal, Tenenbaum-Tucsnak and Lissy for the classical heat equation. In particular, we use the moment method and related constructions of suitable biorthogonal families, as well as new fine properties of the Bessel functions \(J_{\nu}\) of large order \(\nu\) (obtained by ordinary differential equations techniques).

MSC:

93C20 Control/observation systems governed by partial differential equations
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
35K65 Degenerate parabolic equations
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
93B05 Controllability
93B60 Eigenvalue problems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161-204. · Zbl 1103.35052
[2] F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences. J. Funct. Anal. 267 (2014) 2077-2151. · Zbl 1304.35379
[3] K. Beauchard, P. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. 16 (2014) 67-101. · Zbl 1293.35148
[4] A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and applications to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim. 52 (2014) 2970-3001. · Zbl 1304.93027
[5] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1 of Systems and Control: Foundations and Applications, Birkhauser Boston, Boston (1992). · Zbl 0781.93002
[6] M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57 (1998) 1-36. · Zbl 0915.47029
[7] P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media 2 (2007) 695-715. · Zbl 1140.93011
[8] P. Cannarsa, P. Martinez and J. Vancostenoble, Null Controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153-190. · Zbl 1145.35408
[9] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1-19. · Zbl 1168.35025
[10] P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications. Memoirs of the American Mathematical Society. AMS (2016). · Zbl 1328.35114
[11] P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls. Math. Control Relat. Fields 7 (2017) 171-211. · Zbl 1360.35104
[12] P. Cannarsa, P. Martinez and J. Vancostenoble, Precise estimates for biorthogonal families under asymptotic gap conditions. Preprint (2017). · Zbl 1466.93017
[13] P. Cannarsa, D. Rocchetti and J. Vancostenoble, Generation of analytic semi-groups in \(L^2\) for a class of second order degenerate elliptic operators. Control Cybern 37 (2008) 831-878. · Zbl 1187.47032
[14] P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91 (2012) 140-1425. · Zbl 1248.35034
[15] J.M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example. Asymp. Anal. 44 (2005) 237-257. · Zbl 1078.93009
[16] S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975-1017. · Zbl 1251.93040
[17] H.O. Fattorini and D.L. Russel, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rat. Mech. Anal. 4 (1971) 272-292. · Zbl 0231.93003
[18] H.O. Fattorini and D.L. Russel, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quart. Appl. Math. 32 (1974/75) 45-69. · Zbl 0281.35009
[19] H.O. Fattorini, Boundary control of temperature distributions in a parallelepipedon. SIAM J. Control 13 (1975) 1. · Zbl 0311.93028
[20] E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465-514. · Zbl 1007.93034
[21] O. Glass, A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852-868. · Zbl 1180.93015
[22] O. Glass and S. Guerrero, Uniform controllability of a transport equation in zero diffusion-dispersion limit. Math. Models Methods Appl. Sci. 19 (2009) 1567-1601. · Zbl 1194.93025
[23] S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Part. Differ. Equ. 32 (2007) 1813-1836. · Zbl 1135.35017
[24] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations. SIAM J. Control Optim. 52 (2014) 2037-2054. · Zbl 1327.35211
[25] E.N. Güichal, A lower bound of the norm of the control operator for the heat equation. J. Math. Anal. Appl. 110 (1985) 519-527. · Zbl 0579.49029
[26] S. Hansen, Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems. J. Math. Anal. Appl. 158 (1991) 487-508. · Zbl 0742.93004
[27] A. Haraux, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. X (Paris, 1987-1988). Vol. 220 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1991) 241-271.
[28] E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, 3rd ed. Chelsea Publishing Company, New York, 1948. · Zbl 0194.39301
[29] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, Berlin, 2005. · Zbl 1094.49002
[30] I. Krasikov, On the Bessel function \(J_{}\) ν(x) in the transition zone. LMS J. Comput. Math. 17 (2014) 01. · Zbl 1294.41025
[31] J. Lagnese, Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim. 21 (1983) 68-85. · Zbl 0512.93014
[32] L.J. Landau, Bessel functions: monotonicity and bounds. J Lond. Math. Soc. 61 (2000) 197-215. · Zbl 0948.33001
[33] N.N. Lebedev, Special Functions and their Applications, Dover Publications, New York, 1972. · Zbl 0271.33001
[34] P. Lissy, On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension. SIAM J. Control Optim. 52 (2014) 2651-2676. · Zbl 1300.93039
[35] P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation. J. Differ. Equ. 259 (2015) 5331-5352. · Zbl 1331.35352
[36] L. Lorch and M.E. Muldoon, Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (2008) 221-233. · Zbl 1171.33304
[37] L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202-226. · Zbl 1053.93010
[38] L. Miller, How violent are fast controls for Schrödinger and plate vibrations? Arch. Ration. Mech. Anal. 172 (2004) 429-456. · Zbl 1067.35130
[39] L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425-444. · Zbl 1122.93011
[40] L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762-772. · Zbl 1109.93009
[41] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl. 19 (2013) 514-544. · Zbl 1302.93052
[42] Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data. Arch. Ration. Mech. Anal. 216 (2015) 921-981. · Zbl 1319.35272
[43] C.K. Qu and R. Wong, Best possible upper and lower bounds for the zeros of the Bessel function \(J_{}\) ν (x). Trans. Am. Math. Soc. 351 (1999) 2833-59. · Zbl 0930.41020
[44] L. Schwartz, Étude des sommes d’exponentielles, deuxième édition. Paris, Hermann (1959). · Zbl 0092.06302
[45] T.I. Seidman, Two results on exact boundary control of parabolic equations. Appl. Math. Optim. 11 (1984) 145-152. · Zbl 0562.49003
[46] T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The window problem for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000) 233-254. · Zbl 0960.42012
[47] T.I. Seidman, How violent are fast controls? Math. Control Signals Syst. 1 (1988) 89-95. · Zbl 0663.49018
[48] G. Tenenbaum, M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations. J. Differ. Equ. 243 (2007) 70-100. · Zbl 1127.93016
[49] G. Tenenbaum and M. Tucsnak, On the null controllability of diffusion equations, ESAIM: COCV 17 (2011) 1088-1100. · Zbl 1236.93025
[50] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge, England (1944). · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.