×

Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization. (English) Zbl 1388.35036

Summary: In this paper we investigate and compare different gradient algorithms designed for the domain expression of the shape derivative. Our main focus is to examine the usefulness of kernel reproducing Hilbert spaces for PDE-constrained shape optimization problems. We show that radial kernels provide convenient formulas for the shape gradient that can be efficiently used in numerical simulations. The shape gradients associated with radial kernels depend on a so-called smoothing parameter that allows a smoothness adjustment of the shape during the optimization process. Besides, this smoothing parameter can be used to modify the movement of the shape. The theoretical findings are verified in a number of numerical experiments.

MSC:

35J46 First-order elliptic systems
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
49Q10 Optimization of shapes other than minimal surfaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Afraites, L.; Dambrine, M.; Kateb, D., Shape methods for the transmission problem with a single measurement, Numer. Funct. Anal. Optim., 28, 5-6, 519-551 (2007) · Zbl 1114.49020
[2] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Math. Acad. Sci. Paris, 334, 12, 1125-1130 (2002) · Zbl 1115.49306
[3] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404 (1950) · Zbl 0037.20701
[4] Berggren, M., A unified discrete-continuous sensitivity analysis method for shape optimization, in Applied and Numerical Partial Differential Equations, W. Fitzgibbon, Y.A. Kuznetsov, P. Neittaanmäki, J. Périaux, and O. Pironneau, eds., Computer Methods Applied Science, Vol. 15, Springer, New York, 2010, pp. 25-39. · Zbl 1186.65078
[5] Carmeli, C.; De Vito, E.; Toigo, A., Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem, Anal. Appl. (Singap.), 4, 4, 377-408 (2006) · Zbl 1116.46019
[6] Delfour, M.; Payre, G.; Zolésio, J.-P., An optimal triangulation for second-order elliptic problems, Comput. Methods Appl. Mech. Eng., 50, 3, 231-261 (1985) · Zbl 0554.65077
[7] Delfour, M.C. and Zolésio, J.-P., Metrics, analysis, differential calculus, and optimization, in Shapes and Geometries, R.C. Smith, ed., 2nd ed., Advances in Design and Control, Vol. 22, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
[8] Eppler, K.; Harbrecht, H.; Schneider, R., On convergence in elliptic shape optimization, SIAM J. Control Optim., 46, 1, 61-83 (2007) · Zbl 1354.49093
[9] Gangl, P.; Langer, U.; Laurain, A.; Meftahi, H.; Sturm, K., Shape optimization of an electric motor subject to nonlinear magnetostatics, SIAM J. Sci. Comput., 37, 6, B1002-B1025 (2015) · Zbl 1330.49042
[10] Henrot, A. and Pierre, M., Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications], Vol. 48, Springer, Berlin, 2005. Une analyse géométrique [A geometric analysis]. · Zbl 1098.49001
[11] Hintermüller, M., Fast level-set based algorithms using shape and topological sensitivity information, Control Cybernet., 34, 1, 305-324 (2005) · Zbl 1167.49317
[12] Hiptmair, R.; Paganini, A.; Sargheini, S., Comparison of approximate shape gradients, BIT, 55, 2, 459-485 (2015) · Zbl 1320.65099
[13] Laurain, A.; Privat, Y., On a Bernoulli problem with geometric constraints, ESAIM Control Optim. Calc. Var., 18, 1, 157-180 (2012) · Zbl 1337.49004
[14] Laurain, A.; Sturm, K., Distributed shape derivative via averaged adjoint method and applications, ESAIM: M2AN, 50, 4, 1241-1267 (2016) · Zbl 1347.49070
[15] Michor, P. W.; Mumford, D., Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8, 1, 1-48 (2006) · Zbl 1101.58005
[16] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, 153 (2003), Springer-Verlag: Springer-Verlag, New York · Zbl 1026.76001
[17] Paganini, A., Approximate shape gradients for interface problems, Tech. Rep. 2014-12, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014.
[18] Paganini, A. and Hiptmair, R., Approximate Riesz representatives of shape gradients, Tech. Rep., Seminar for Applied Mathematics, ETH Zurich.
[19] Sokołowski, J. and Zolésio, J.-P., Shape Sensitivity Analysis in Introduction to Shape Optimization, R.L. Graham, J. Stoer, and R. Varga, eds., Springer Series in Computational Mathematics, Vol. 16, Springer-Verlag, Berlin, 1992.
[20] Sturm, K., Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control Optim., 53, 4, 2017-2039 (2015) · Zbl 1327.49073
[21] Sturm, K., On shape optimization with non-linear partial differential equations, PhD thesis, Diss., Technische Universität Berlin, Berlin, 2015.
[22] Sturm, K.; Hömberg, D.; Hintermüller, M., Distortion compensation as a shape optimisation problem for a sharp interface model, Comp. Optim. Appl., 1-32 (2016)
[23] Wendland, H., Scattered Data Approximation, 17 (2005), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1075.65021
[24] Younes, L., Shapes and Diffeomorphisms, 171 (2010), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1205.68355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.