×

Mean-field Pontryagin maximum principle. (English) Zbl 1386.49003

Summary: We derive a maximum principle for optimal control problems with constraints given by the coupling of a system of ordinary differential equations and a partial differential equation of Vlasov type with smooth interaction kernel. Such problems arise naturally as Gamma-limits of optimal control problems constrained by ordinary differential equations, modeling, for instance, external interventions on crowd dynamics by means of leaders. We obtain these first-order optimality conditions in the form of Hamiltonian flows in the Wasserstein space of probability measures with forward-backward boundary conditions with respect to the first and second marginals, respectively. In particular, we recover the equations and their solutions by means of a constructive procedure, which can be seen as the mean-field limit of the Pontryagin Maximum Principle applied to the optimal control problem for the discretized density, under a suitable scaling of the adjoint variables.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations

Software:

Boids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487-490 (2000)
[2] Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. B Methodol. 36(6), 507-535 (2002)
[3] Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25-34 (1987)
[4] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)
[5] Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE Trans. Autom. Control 56(5), 1124-1129 (2011) · Zbl 1368.93261
[6] Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852-862 (2007) · Zbl 1366.91116
[7] D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96(10), 104302 (2006)
[8] Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577-621 (2014) · Zbl 1310.92064
[9] Huang, M., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: 42nd IEEE Conference on Decision and Control 1, pp. 98-103. IEEE (2003)
[10] Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229-260 (2007) · Zbl 1156.91321
[11] Bongini, M., Fornasier, M.: Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterog. Media 9(1), 1-31 (2014) · Zbl 1333.93112
[12] Bongini, M., Fornasier, M., Frölich, F., Hagverdi, L : Sparse control of force field dynamics. In: International Conference on NETwork Games, COntrol and OPtimization (2014) · Zbl 1311.91164
[13] Bongini, M., Fornasier, M., Junge, O., Scharf, B.: Sparse control of alignment models in high dimension. Netw. Heterog. Media 10(3), 647-697 (2014) · Zbl 1336.93013
[14] Bongini, M., Fornasier, M., Kalise, D.: (Un)conditional consensus emergence under feedback controls. Discrete Contin. Dyn. Syst. 35(9), 4071-4094 (2015) · Zbl 1335.93006
[15] Caponigro, M., Fornasier, M., Piccoli, B., Trélat, E.: Sparse stabilization and control of alignment models. Math. Models Methods Appl. Sci. 25(03), 521-564 (2015) · Zbl 1331.49003
[16] Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013) · Zbl 1287.93002
[17] Fornasier, M., Solombrino, F.: Mean-field optimal control. ESAIM Control Optim. Calc. Var. 20(4), 1123-1152 (2014) · Zbl 1305.49004
[18] Piccoli, B., Rossi, F., Trélat, E.: Control to flocking of the kinetic Cucker-Smale model. SIAM J. Math. Anal. 47(6), 4685-4719 (2015) · Zbl 1327.93230
[19] Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17(01), 243-266 (2011) · Zbl 1213.49041
[20] Pieper, K., Vexler, B.: A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51(4), 2788-2808 (2013) · Zbl 1357.49121
[21] Privat, Y., Trélat, E., Zuazua, E.: Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(6), 1097-1126 (2013) · Zbl 1296.49004
[22] Stadler, G.: Elliptic optimal control problems with \[L^1\] L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159-181 (2009) · Zbl 1185.49031
[23] Fornasier, M., Piccoli, B., Rossi, F.: Mean-field sparse optimal control. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2028), 20130400 (2014) · Zbl 1353.49014
[24] Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 1683-1710 (2016) · Zbl 1415.91230
[25] Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Comput. 63(3), 341-356 (2011) · Zbl 1215.49034
[26] Burger, M., Di Francesco, M., Markowich, P., Wolfram, M.T.: Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser. B 19, 1311-1333 (2014) · Zbl 1304.49008
[27] Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean-Vlasov dynamics versus mean field games. Math. Finance Econ. 7(2), 131-166 (2013) · Zbl 1269.91012
[28] Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143-177 (1999) · Zbl 0922.49013
[29] Albi, G., Choi, Y.P., Fornasier, M., Kalise, D.: Mean field control hierarchy. arXiv:1608.01728 · Zbl 1378.49024
[30] Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, New York (2013) · Zbl 1277.49001
[31] Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18-53 (2008) · Zbl 1132.37028
[32] Cullen, M., Gangbo, W., Pisante, G.: The semigeostrophic equations discretized in reference and dual variables. Arch. Ration. Mech. Anal. 185(2), 341-363 (2007) · Zbl 1139.86003
[33] Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008) · Zbl 1145.35001
[34] Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[35] Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002) · Zbl 1213.49041
[36] Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63(1), 017101 (2000)
[37] Chuang, Y.L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D 232(1), 33-47 (2007) · Zbl 1375.82103
[38] Wongkaew, S., Caponigro, M., Borzi, A.: On the control through leadership of the Hegselmann-Krause opinion formation model. Math. Models Methods Appl. Sci. 25(3), 565-585 (2015) · Zbl 1311.91164
[39] Dobrušin, R.L.: Vlasov equations. Funktsional. Anal. i Prilozhen 13(2), 48-58, 96 (1979) · Zbl 1366.91116
[40] Villani, C.: Landau damping. In: Numerical Models for Fusion. Panor. Synthèses, vol. 39/40, pp. 237-326. Soc. Math. France, Paris (2013) · Zbl 1307.76087
[41] Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281-303 (1992) · Zbl 0810.35089
[42] Lions, P.L., Perthame, B.: Propagation of moments and regularity for the \[33\]-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415-430 (1991) · Zbl 0741.35061
[43] Piccoli, B., Rossi, F.: Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math. 124(1), 73-105 (2013) · Zbl 1263.35202
[44] Piccoli, B., Rossi, F.: Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211(1), 335-358 (2014) · Zbl 1480.35378
[45] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) · Zbl 0457.35001
[46] Dal Maso, G.: An Introduction to \[\varGamma\] Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993)
[47] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, vol. 254. Clarendon Press, Oxford (2000) · Zbl 0957.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.