×

Comparison between three-dimensional linear and nonlinear tsunami generation models. (English) Zbl 1161.76440

Summary: The modeling of tsunami generation is an essential phase in understanding tsunamis. For tsunamis generated by underwater earthquakes, it involves the modeling of the sea bottom motion as well as the resulting motion of the water above. A comparison between various models for three-dimensional water motion, ranging from linear theory to fully nonlinear theory, is performed. It is found that for most events the linear theory is sufficient. However, in some cases, more-sophisticated theories are needed. Moreover, it is shown that the passive approach in which the seafloor deformation is simply translated to the ocean surface is not always equivalent to the active approach in which the bottom motion is taken into account, even if the deformation is supposed to be instantaneous.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M12 Finite volume methods applied to problems in fluid mechanics
76M15 Boundary element methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Ben-Menahem A. and Rosenman M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. J. Geophys. Res. 77: 3097–3128 · doi:10.1029/JB077i017p03097
[2] Bona J.L., Colin T. and Lannes D. (2005). Long wave approximations for water waves. Arch. Rational Mech. Anal. 178: 373–410 · Zbl 1108.76012 · doi:10.1007/s00205-005-0378-1
[3] Bona J.L., Pritchard W.G. and Scott L.R. (1981). An evaluation of a model equation for water waves. Phil. Trans. R. Soc. Lond. A 302: 457–510 · Zbl 0497.76023 · doi:10.1098/rsta.1981.0178
[4] Dutykh, D., Dias, F.: Water waves generated by a moving bottom. In: Kundu, A. (ed.) Tsunami and nonlinear waves. Springer, Heidelberg (Geo Sc.) (2007) · Zbl 1310.76021
[5] Dutykh D., Dias F. and Kervella Y. (2006). Linear theory of wave generation by a moving bottom. C. R. Acad. Sci. Paris, Ser. I 343: 499–504 · Zbl 1102.76005
[6] Filon L.N.G. (1928). On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinburgh 49: 38–47 · JFM 55.0946.02
[7] Fochesato C. and Dias F. (2006). A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. A 462: 2715–2735 · Zbl 1149.76610 · doi:10.1098/rspa.2006.1706
[8] Geist E.L., Titov V.V. and Synolakis C.E. (2006). Tsunami: wave of change. Sci. Am. 294: 56–63 · doi:10.1038/scientificamerican0106-56
[9] Ghidaglia J.-M., Kumbaro A. and Le Coq G. (1996). Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sc. Paris, Ser. I 322: 981–988 · Zbl 0849.65076
[10] Ghidaglia J.-M., Kumbaro A. and Le Coq G. (2001). On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B/Fluids 20: 841–867 · Zbl 1059.76041 · doi:10.1016/S0997-7546(01)01150-5
[11] González F.I., Bernard E.N., Meinig C., Eble M.C., Mofjeld H.O. and Stalin S. (2005). The NTHMP tsunameter network. Nat. Hazards 35: 25–39 · doi:10.1007/s11069-004-2402-4
[12] Grilli S., Guyenne P. and Dias F. (2001). A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35: 829–867 · Zbl 1039.76043 · doi:10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2
[13] Grilli S., Vogelmann S. and Watts P. (2002). Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides. Eng. Anal. Bound. Elem. 26: 301–313 · Zbl 1072.76591 · doi:10.1016/S0955-7997(01)00113-8
[14] Guesmia M., Heinrich P.H. and Mariotti C. (1998). Numerical simulation of the 1969 Portuguese tsunami by a finite element method. Nat. Hazards 17: 31–46 · doi:10.1023/A:1007920617540
[15] Hammack J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60: 769–799 · Zbl 0273.76010 · doi:10.1017/S0022112073000479
[16] Hammack J.L. and Segur H. (1974). The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech 65: 289–314 · Zbl 0373.76010 · doi:10.1017/S002211207400139X
[17] Houston, J.R., Garcia, A.W.: Type 16 flood insurance study. USACE WES Report No. H-74-3 (1974)
[18] Kajiura K. (1963). The leading wave of tsunami. Bull. Earthquake Res. Inst. Tokyo Univ. 41: 535–571
[19] Kânoglu, K., Synolakis, C.: Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. 97, 148501 (2006)
[20] Kirby, J.T.: Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents. In: Lakhan, V.C. (ed.) Advances in Coastal Modelling, pp. 1–41, Elsevier, Amsterdam (2003)
[21] Kulikov E.A., Medvedev P.P. and Lappo S.S. (2005). Satellite recording of the Indian Ocean tsunami on December 26, 2004. Doklady Earth Sci. A 401: 444–448
[22] Lay, T., Kanamori, H., Ammon, C.J., Nettles M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, K., Sipkin, S.: The great Sumatra-Andaman earthquake of 26 December 2004. Science 308, 1127–1133 (2005)
[23] LeVeque R.J. (1998). Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146: 346–365 · Zbl 0931.76059 · doi:10.1006/jcph.1998.6058
[24] Liu, P.L.-F., Liggett, J.A.: Applications of boundary elementmethods to problems of water waves. In: Banerjee PK, Shaw RP (eds.) Developments in boundary element methods, 2nd edn. Applied Science Publishers, England. Chapter 3, 37–67 (1983
[25] Nwogu O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation. Coast. Ocean Eng. 119: 618–638 · doi:10.1061/(ASCE)0733-950X(1993)119:6(618)
[26] Okada Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75: 1135–1154
[27] Peregrine D.H. (1967). Long waves on a beach. J. Fluid Mech. 27: 815–827 · Zbl 0163.21105 · doi:10.1017/S0022112067002605
[28] Synolakis C.E. and Bernard E.N. (2006). Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 364: 2231–2265 · doi:10.1098/rsta.2006.1824
[29] Titov V.V. and Synolakis C.E. (1998). Numerical modelling of tidal wave runup. J. Waterway, Port, Coastal, Ocean Eng. 124: 157–171 · doi:10.1061/(ASCE)0733-950X(1998)124:4(157)
[30] Todorovska M.I., Hayir A. and Trifunac M.D. (2002). A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn. Earthq. Eng. 22: 129–141 · doi:10.1016/S0267-7261(01)00058-6
[31] Todorovska M.I. and Trifunac M.D. (2001). Generation of tsunamis by a slowly spreading uplift of the sea-floor. Soil Dyn. Earthq. Eng. 21: 151–167 · doi:10.1016/S0267-7261(00)00096-8
[32] Tuck, E.O.: Models for predicting tsunami propagation. NSF Workshop on Tsunamis, California, Ed: Hwang L.S., Lee Y.K. Tetra Tech Inc., 43–109 (1979)
[33] Tuck E.O. and Hwang L.-S. (1972). Long wave generation on a sloping beach. J. Fluid Mech. 51: 449–461 · Zbl 0234.76012 · doi:10.1017/S0022112072002289
[34] Ursell F. (1953). The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49: 685–694 · Zbl 0052.43107 · doi:10.1017/S0305004100028887
[35] Villeneuve M. and Savage S.B. (1993). Nonlinear, dispersive, shallow-water waves developed by a moving bed. J. Hydraulic Res. 31: 249–266 · doi:10.1080/00221689309498848
[36] Ward S.N. (2001). Landslide tsunami. J. Geophys. Res. 106: 11201–11215 · doi:10.1029/2000JB900450
[37] Wei G., Kirby J.T., Grilli S.T. and Subramanya R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294: 71–92 · Zbl 0859.76009 · doi:10.1017/S0022112095002813
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.