×

A comparison of option prices under different pricing measures in a stochastic volatility model with correlation. (English) Zbl 1134.91423

Summary: This paper investigates option prices in an incomplete stochastic volatility model with correlation. In a general setting, we prove an ordering result which says that prices for European options with convex payoffs are decreasing in the market price of volatility risk.
As an example, and as our main motivation, we investigate option pricing under the class of \(q\)-optimal pricing measures. The \(q\)-optimal pricing measure is related to the marginal utility indifference price of an agent with constant relative risk aversion. Using the ordering result, we prove comparison theorems between option prices under the minimal martingale, minimal entropy and variance-optimal pricing measures. If the Sharpe ratio is deterministic, the comparison collapses to the well known result that option prices computed under these three pricing measures are the same.
As a concrete example, we specialize to a variant of the Hull-White or Heston model for which the Sharpe ratio is increasing in volatility. For this example we are able to deduce option prices are decreasing in the parameter \(q\). Numerical solution of the pricing pde corroborates the theory and shows the magnitude of the differences in option price due to varying \(q\).

MSC:

91B28 Finance etc. (MSC2000)
91B30 Risk theory, insurance (MSC2010)
91B70 Stochastic models in economics

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bakshi, G., C. Cao, and Z. Chen. (1997). ”Empirical Performance of Alternative Option Pricing Models,” Journal of Finance 52, 2003–2049. · doi:10.2307/2329472
[2] Bates, D. (1996). ”Testing Option Pricing Models.” In G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics, Vol 15: Statistical Methods in Finance. Amsterdam: North Holland, pp. 567–611.
[3] Belledin, M. and C. Schlag. (1999). ”An Empirical Comparison of Alternative Stochastic Volatility Models,” Preprint, Johann Wolfgang Goethe-Universität.
[4] Bergman, Y.Z., B.D. Grundy, and Z. Wiener. (1996). ”General Properties of Option Prices,” Journal of Finance 51(5), 1573–1610. · doi:10.2307/2329530
[5] Biagini, F., P. Guasoni, and M. Prattelli. (2000). ”Mean Variance Hedging for Stochastic Volatility Models,” Mathematical Finance 10(2), 109–123. · Zbl 1014.91039 · doi:10.1111/1467-9965.00084
[6] Campbell, J. and J.H. Cochrane. (1997). ”By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior,” Working paper.
[7] Delbaen, F., P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer, and C. Stricker. (2002). ”Exponential Hedging and Entropic Penalties,” Mathematical Finance 12(2), 99–123. · Zbl 1072.91019 · doi:10.1111/1467-9965.02001
[8] Delbaen, F., P. Monat, W. Schachermayer, M. Schweizer, and C. Stricker. (1997). ”Weighted Norm Inequalities and Hedging in Incomplete Markets,” Finance and Stochastics 1, 181–227. · Zbl 0916.90016 · doi:10.1007/s007800050021
[9] Delbaen, F. and W. Schachermayer. (1996). ”The Variance-Optimal Martingale Measure for Continuous Processes,” Bernoulli 2, 81–105, amendments and corrections Bernoulli 2, 379–380. · Zbl 0849.60042
[10] Duffie, D. (1996). Dynamic Asset Pricing Theory, 2nd edition, Princeton University Press. · Zbl 1140.91041
[11] Duffie, D. and H.R. Richardson. (1991). ”Mean-Variance Hedging in Continuous Time,” Annals of Applied Probability 1, 1–15. · Zbl 0735.90021 · doi:10.1214/aoap/1177005978
[12] El Karoui, N., M. Jeanblanc, and S.E. Shreve. (1998). ”Robustness of the Black Scholes Formula,” Mathematical Finance 8(2), 93–126. · Zbl 0910.90008 · doi:10.1111/1467-9965.00047
[13] Föllmer, H. and M. Schweizer. (1991). ”Hedging of Contingent Claims under Incomplete Information.” In M.H.A Davis and R.J.Elliot (eds.), Applied Stochastic Analysis, Stochastic Monographs, Vol 5. New York: Gordon and Breach, pp. 389–414. · Zbl 0738.90007
[14] Föllmer, H. and D. Sondermann. (1986). ”Hedging of Non-Redundant Contingent Claims.” In W. Hildenbrand and A. Mas-Colell (eds.), Contributions to Mathematical Economics. Amsterdam: North Holland, pp. 205–223. · Zbl 0663.90006
[15] Frey, R. (1997). ”Derivative Asset Analysis in Models with Level-Dependent and Stochastic Volatility,” CWI Quarterly 10(1), 1–34. · Zbl 0913.90015
[16] Friedman, A. (1975). Stochastic Differential Equations and Applications Vol. 1. New York: Academic Press. · Zbl 0323.60056
[17] Frittelli, M. (2000). ”The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets,” Mathematical Finance 10, 39–52. · Zbl 1034.91041 · doi:10.1111/1467-9965.00079
[18] Hakala, J. and U. Wystup. (2002). ”Heston’s Stochastic Volatility Model Applied to Foreign Exchange Options.” In J. Hakala and U. Wystup (eds.), Foreign Exchange Risk: Models, Instruments and Strategies. RISK Books, Chapter 23.
[19] Heath, D., E. Platen, and M. Schweizer. (2001). ”A Comparison of two Quadratic Approaches to Hedging in Incomplete Markets,” Mathematical Finance 11(4), 385–413. · Zbl 1032.91058 · doi:10.1111/1467-9965.00122
[20] Heath, D. and M. Schweizer. (2000). ”Martingales Versus Pdes in Finance: An Equivalence Result with Examples,” J. Applied Probability 37, 947–957. · Zbl 0996.91069 · doi:10.1239/jap/1014843075
[21] Henderson, V. (2005). ”Analytical Comparisons of Option Prices in Stochastic Volatility Models,” Mathematical Finance 15, 49–59. · Zbl 1109.91025 · doi:10.1111/j.0960-1627.2005.00210.x
[22] Heston, S.L. (1993). ”A Closed Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies 6, 327–343. · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[23] Hobson, D. (1998). ”Volatility Mis-Specification, Option Pricing and Super-Replication Via Coupling,” Annals of Applied Probability 8(1), 193–205. · Zbl 0933.91012 · doi:10.1214/aoap/1027961040
[24] Hobson, D. (2004). ”Stochastic Volatility Models, Correlation and the q-Optimal Measure,” Mathematical Finance 14, 537–556. · Zbl 1169.60317 · doi:10.1111/j.0960-1627.2004.00204.x
[25] Hull, J.C and A. White. (1987). ”The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance 42, 281–300. · Zbl 1126.91369 · doi:10.2307/2328253
[26] Hull, J.C. and A. White. (1988). ”An Analysis of the Bias in Option Pricing Caused by a Stochastic Volatility,” Advances in Futures and Options Research 3, 29–61.
[27] Karatzas, I. and S. Shreve. (1991). Brownian Motion and Stochastic Calculus, 2nd edition, New York: Springer-Verlag. · Zbl 0734.60060
[28] Kluge, T. (2002). ”Pricing Derivatives in Stochastic Volatility Models Using the Finite Difference Method,” Diploma Thesis, Technische Universität Chemnitz.
[29] Laurent, J.P and H. Pham. (1999). ”Dynamic Programming and Mean-Variance Hedging,” Finance and Stochastics 3, 83–101. · Zbl 0924.90021 · doi:10.1007/s007800050053
[30] Lewis, A.L. (2000). Option Valuation Under Stochastic Volatility: With Mathematica Code, Finance Press. · Zbl 0937.91060
[31] Melino, A. and S. Turnbull. (1990). ”The Pricing of Foreign Currency Options with Stochastic Volatility,” Journal of Econometrics 45, 239–265. · Zbl 1126.91374 · doi:10.1016/0304-4076(90)90100-8
[32] Nandi, S. (1988). ”How Important is the Correlation Between Returns and Volatility in a Stochastic Volatility Model? Empirical Evidence from Pricing and Hedging in the S&P500 Index Options Market,” Journal of Banking and Finance 22, 589–610. · doi:10.1016/S0378-4266(98)00047-8
[33] Pham, H., T. Rheinländer, and M. Schweizer. (1998). ”Mean-variance Hedging for Continuous Processes: New Proofs and Examples,” Finance and Stochastics 2(2), 173–198. · Zbl 0894.90023 · doi:10.1007/s007800050037
[34] Rheinländer, T. (2002). An Entropy Approach to Stochastic Volatility Models, Preprint, ETH Zurich. · Zbl 1049.60035
[35] Rogers, L.C.G. and D., Williams. (1987). Diffusions, Markov Processes and Martingales: Itô Calculus. Wiley. · Zbl 0627.60001
[36] Romano, M. and N. Touzi. (1997). ”Contingent Claims and Market Completeness in a Stochastic Volatility Model,” Mathematical Finance 7(4), 399–410. · Zbl 1034.91501 · doi:10.1111/1467-9965.00038
[37] Schweizer, M. (1999). ”A minimality property of the minimal martingale measure,” Statistics and Probability Letters 42, 27–31. · Zbl 0984.60049 · doi:10.1016/S0167-7152(98)00180-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.