×

Flow and passive transport in planar multipolar flows. (English) Zbl 1415.76205

Summary: We study the flow and transport of heat or mass, modelled as passive scalars, within a basic geometrical unit of a three-dimensional multipolar flow – a triangular prism – characterised by a side length \(L\), a normalised thickness \(0.01\leqslant \varepsilon\leqslant 0.1\) and an apex angle \(0<\alpha<\pi\), and connected to inlet and outlet pipes of equal normalised radius \(0.01\leqslant \delta\leqslant 0.1\) perpendicularly to the plane of the flow. The flow and scalar fields are investigated over the range \(0.1\leqslant Re_p\leqslant 10\) and \(0.1\leqslant Pe_p\leqslant 1000\), where \(Re_p\) and \(Pe_p\) are respectively the Reynolds and Péclet numbers imposed at the inlet pipe when either a Dirichlet (D) or a Neumann (N) scalar boundary condition is imposed at the wall unattached to the inlets and outlets. A scalar no-flux boundary condition is imposed at all the other walls. An axisymmetric model is applied to understand the flow and scalar transport in the inlet and outlet regions, which consist of a turning region close to the pipe centreline and a channel region away from it. A separate two-dimensional model is then developed for the channel region by solving the integral form of the momentum and scalar advection-diffusion equations. Analytical relations between geometrical, flow and scalar transport parameters based on similarity and integral methods are generated and agree closely with numerical solutions. Finally, three-dimensional numerical calculations are undertaken to test the validity of the axisymmetric and depth-averaged analyses. Dominant flow and scalar transport features vary dramatically across the flow domain. In the turning region, the flow is a largely irrotational straining flow when \(\varepsilon\geqslant \delta\) and a dominantly viscous straining flow when \(\varepsilon\ll \delta\). The thickness of the scalar boundary layer scales to the local Péclet number to the power \(1/3\). The diffusive flux \(j_d\) and the scalar \(C_s\) at the wall where (D) or (N) is imposed, respectively, are constant. In the channel region, the flow is parabolic and dominated by a source flow near the inlet and an irrotational straining flow away from it. When (D) is imposed the scalar decreases exponentially with distance from the inlet and the normalised scalar transfer coefficient converges to \(\Lambda_\infty =2.5694\). When (N) is imposed, \(C_s\) varies proportionally to surface area. Transport in the straining region downstream of the inlet is diffusion-limited, and \(j_d\) and \(C_s\) are functions of the geometrical parameters \(L\), \(\varepsilon\), \(\alpha\) and \(\delta\). In addition to describing the fundamental properties of the flow and passive transport in multipolar configurations, the present work demonstrates how geometrical and flow parameters should be set to control transfers in the different regions of the flow domain.

MSC:

76D27 Other free boundary flows; Hele-Shaw flows
76E05 Parallel shear flows in hydrodynamic stability
76S05 Flows in porous media; filtration; seepage

Software:

Gmsh
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 9th printing, (1972), Dover · Zbl 0543.33001
[2] Acrivos, A., The asymptotic form of the laminar boundary-layer mass-transfer rate for large interfacial velocities, J. Fluid Mech., 12, 337-357, (1962) · Zbl 0103.43202 · doi:10.1017/S0022112062000257
[3] Batchelor, G. K., An Introduction to Fluid Dynamics, (1957), Cambridge University Press · Zbl 0958.76001
[4] Bejan, A., Convection Heat Transfer, (2013), John Wiley & Sons · doi:10.1002/9781118671627
[5] Camera-Roda, G.; Boi, C.; Saavedra, A.; Sarti, G. C., Heat and mass transfer boundary layers in radial creeping flow, Intl J. Heat Mass Transfer, 37, 14, 2145-2153, (1994) · doi:10.1016/0017-9310(94)90316-6
[6] Chatterjee, A., An infinite series solution for the creeping radial entrance flow of a Newtonian fluid, AIChE J., 39, 9, 1563-1568, (1993) · doi:10.1002/aic.690390915
[7] Chatterjee, A., Newtonian radial entrance flow, AIChE J., 46, 3, 462-475, (2000) · doi:10.1002/aic.690460305
[8] Chatterjee, A.; Deviprasath, L. J., Heat transfer in confined laminar axisymmetric impinging jets at small nozzle-plate distances: the role of upstream vorticity diffusion, Numer. Heat Transfer, 39, 8, 777-800, (2001) · doi:10.1080/10407780152121146
[9] Chatterjee, A.; White, D., Radial entry flow of a newtonian fluid, J. Phys. D: Appl. Phys., 22, 915-924, (1989) · doi:10.1088/0022-3727/22/7/006
[10] Chatwin, P. C., On the longitudinal dispersion of passive contaminant in oscillatory flow in tubes, J. Fluid Mech., 71, 513-527, (1975) · Zbl 0333.76050 · doi:10.1017/S0022112075002716
[11] Chen, J.-D., Radial viscous fingering patterns in Hele-Shaw cells, Exp. Fluids, 5, 363-371, (1987) · doi:10.1007/BF00264399
[12] Chen, J.-D., Growth of radial viscous fingers in a Hele-Shaw cell, J. Fluid Mech., 201, 223-242, (1989) · doi:10.1017/S0022112089000911
[13] Cooper, R. J.; Billingham, J.; King, A. C., Flow and reaction in solid oxide fuel cells, J. Fluid Mech., 411, 233-262, (2000) · Zbl 0955.76096 · doi:10.1017/S0022112099008150
[14] Daccord, G.; Nittman, J.; Stanley, H. E., Radial viscous fingers and diffusion-limited aggregration: fractal dimension and growth sites, Phys. Rev. Lett., 56, 4, 336-339, (1986) · doi:10.1103/PhysRevLett.56.336
[15] Detry, J. G.; Deroanne, C.; Sindic, M.; Jensen, B. B. B., Laminar flow in radial flow cell with small aspect ratios: numerical and experimental study, Chem. Engng Sci., 64, 31-42, (2009) · doi:10.1016/j.ces.2008.09.008
[16] Detry, J. G.; Rouxhet, P. G.; Boulangé-Petermann, L.; Deroanne, C.; Sindic, M., Cleanability assessment of model solid surfaces with a radial-flow cell, Colloids Surf. A, 302, 540-548, (2007) · doi:10.1016/j.colsurfa.2007.03.027
[17] Duda, J. L.; Vrentas, J. S., Heat transfer in a cylindrical cavity, J. Fluid Mech., 45, 261-279, (1971) · doi:10.1017/S0022112071000041
[18] Eames, I., A hundred years of Hele-Shaw’s analogue computer, Math. Today, 85-88, (1999) · Zbl 0977.76500
[19] Elkouh, A. F., Inertial effects in laminar radial flow between parallel plates, Intl J. Mech. Sci., 9, 253-255, (1967) · doi:10.1016/0020-7403(67)90020-3
[20] Fryer, P. J.; Slater, N. K. H.; Duddridge, J. E., Suggestions for the operation of radial flow cells in cell adhesion and biofouling studies, Biotechnol. Bioengng, 27, 434-438, (1985) · doi:10.1002/bit.260270407
[21] Gersten, K., Die kompressible Grenzschichtströmung am dreidimensionalen Staupunkt bei starkem Absaugen oder Ausblasen, Wärme- Stoffübertrag., 1, 52-61, (1973) · doi:10.1007/BF01270705
[22] Gersten, K.; Körner, H., Wärmeübergang unter Berücksichtigung der Reibungswärme bei laminaren Keil-Strömungen mit Veränderlicher Temperatur und Normalgeschwindigkeit Entlang der Wand, Intl J. Heat Mass Transfer, 11, 655-673, (1968) · Zbl 0155.55101 · doi:10.1016/0017-9310(68)90068-9
[23] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Intl J. Numer. Meth. Engng, 79, 11, 1309-1331, (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[24] Goldstein, A. S.; Di-Milla, P. A., Application of fluid mechanic and kinetic models to characterize mammalian cell detachment in radial-flow chamber, Biotechnol. Bioengng, 55, 616-629, (1996) · doi:10.1002/(SICI)1097-0290(19970820)55:4<616::AID-BIT4>3.0.CO;2-K
[25] Hagiwara, T., Studies on the characteristics of radial flow nozzles, Trans. Japan Soc. Mech. Engrs, 28, 186, 138-144, (1962) · doi:10.1299/kikai1938.28.138
[26] Haugh, L. M.; Linsenmeier, R. A.; Goldstick, T. K., Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination, Ann. Biomed. Engng, 18, 19-36, (1990) · doi:10.1007/BF02368415
[27] Hele-Shaw, H. S., The theory of continuous calculating machines, and of a mechanism on a new principle for this and other purposes, Proc. R. Soc. Lond., 37, 189-191, (1884) · JFM 16.1117.02 · doi:10.1098/rspl.1884.0033
[28] Hele-Shaw, H. S., Flow of water, Nature, 58, 1489, 34-36, (1898) · doi:10.1038/058034a0
[29] Hewitt, J. M.; Mckenzie, D. P., Dissipative heating in convective flows, J. Fluid Mech., 68, 721-738, (1975) · Zbl 0308.76072 · doi:10.1017/S002211207500119X
[30] Homann, F., Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel, Z. Angew. Math. Mech., 16, 3, 153-164, (1936) · JFM 62.0984.02 · doi:10.1002/zamm.19360160304
[31] Howarth, L., Cxliv. the boundary layer in three-dimensional flow. - Part II. The flow near a stagnation point, Lond. Edinb. Dubl. Phil. Mag.: Series 7, 42, 335, 1433-1440, (1951) · Zbl 0043.39901 · doi:10.1080/14786445108560962
[32] Howison, S. D., Fingering in Hele-Shaw cells, J. Fluid Mech., 167, 439-453, (1986) · Zbl 0595.76098 · doi:10.1017/S0022112086002902
[33] Hunt, J. B.; Torbe, I., Characteristics of a hydrostatic thrust bearing, Intl J. Mech. Sci., 4, 503-516, (1962) · doi:10.1016/S0020-7403(62)80012-5
[34] Ishizawa, S., The axi-symmetric laminar flow in an arbitrarily shaped narrow gap. 1st Report, Theoretical analysis for the inlet region, Bull. JSME, 8, 31, 353-367, (1965) · doi:10.1299/jsme1958.8.353
[35] Ishizawa, S., The axi-symmetric laminar flow in an arbitrarily shaped narrow gap. 2nd Report, Theoretical analysis for the downstream region, Bull. JSME, 9, 33, 86-103, (1966) · doi:10.1299/jsme1958.9.86
[36] Jackson, J. D.; Symmons, G. R., An investigation of laminar radial flow between two parallel discs, Appl. Sci. Res. A, 15, 1, 59-75, (1965) · doi:10.1007/BF00411546
[37] Jackson, J. D.; Symmons, G. R., The pressure distribution in a hydrostatic thrust bearing, Intl J. Mech. Sci., 7, 239-242, (1965) · doi:10.1016/0020-7403(65)90041-X
[38] Kamal, M. R.; Kenig, S., The injection molding of thermoplastics. Part I: Theoretical model, Polym. Engng Sci., 12, 294-301, (1972) · doi:10.1002/pen.760120408
[39] Kamal, M. R.; Kenig, S., The injection molding of thermoplastics. Part II. Experimental test of the model, Polym. Engng Sci., 12, 302-308, (1972) · doi:10.1002/pen.760120409
[40] Von Kármán, T., Über laminare und turbulented Reibung, Z. Angew. Math. Mech., 1, 233-252, (1921) · JFM 48.0968.01 · doi:10.1002/zamm.19210010401
[41] Kellogg, O. D., Foundations of Potential Theory, (1929), Verlag Von Julius Springer · JFM 55.0282.01 · doi:10.1007/978-3-642-90850-7
[42] Klettner, C. A.; Eames, I.; Semsarzadeh, S.; Nicolle, A., The effect of a uniform through-surface flow on a cylinder and sphere, J. Fluid Mech., 793, 798-839, (2016) · Zbl 1382.76055 · doi:10.1017/jfm.2016.128
[43] Koplik, J.; Redner, S.; Hinch, E. J., Tracer dispersion in planar multipole flows, Phys. Rev. E, 50, 6, 4650-4671, (1994) · doi:10.1103/PhysRevA.50.4650
[44] Kurowski, P.; Ippolito, I.; Hulin, J. P.; Koplik, J.; Hinch, E. J., Anomalous dispersion in a dipole flow geometry, Phys. Fluids, 6, 108-117, (1994) · Zbl 0925.76740 · doi:10.1063/1.868075
[45] Lee, P.-M.; Lin, S., Pressure distribution for radial inflow between narrowly spaced disks, Trans. ASME J. Fluids Engng, 107, 107, 338-341, (1985) · doi:10.1115/1.3242488
[46] Libby, P. A., Heat and mass transfer at a general three-dimensional stagnation point, AIAA J., 5, 3, 507-517, (1967) · Zbl 0158.23303 · doi:10.2514/3.4008
[47] Livesey, J. L., Inertia effects in viscous flows, Intl J. Mech. Sci., 1, 84-88, (1960) · doi:10.1016/0020-7403(60)90031-X
[48] Moller, P. S.
[49] Moller, P. S., A radial diffuser using incompressible flow between narrowly spaced disks, Trans. ASME J. Basic Engng, 88, 1, 155-162, (1966) · doi:10.1115/1.3645793
[50] Mukhopadhyay, A., Analytical solutions of Nusselt number for thermally developing radial flows through small gap between two parallel disks, Trans. ASME J. Heat Transfer, 131, 5, 1-4, (2009) · doi:10.1115/1.3013826
[51] Nakabayashi, N.; Ichikawa, T.; Morinishi, Y., Size of annular separation bubble around the inlet corner and viscous flow structure between two parallel disks, Exp. Fluids, 32, 425-433, (2002) · doi:10.1007/s00348-001-0370-y
[52] Nicolle, A.; Eames, I., Numerical study of flow through and around a circular array of cylinders, J. Fluid Mech., 679, 1-31, (2011) · Zbl 1241.76146 · doi:10.1017/jfm.2011.77
[53] Ockendon, H.; Ockendon, J. R., Variable-viscosity flows in heated and cooled channels, J. Fluid Mech., 83, 1, 177-190, (1977) · doi:10.1017/S002211207700113X
[54] Osterle, J. F.; Hughes, W. R., The effect of lubricant inertia in hydrostatic thrust-bearing lubrication, Wear, 1, 6, 465-471, (1958) · doi:10.1016/0043-1648(58)90515-5
[55] Owen, P. R.; Thomson, W. R., Heat transfer across rough surfaces, J. Fluid Mech., 15, 321-334, (1962) · Zbl 0113.19601 · doi:10.1017/S0022112063000288
[56] Paterson, L., Radial fingering in a Hele-Shaw cell, J. Fluid Mech., 113, 513-529, (1981) · doi:10.1017/S0022112081003613
[57] Paterson, L., Fingering with miscible fluids in a Hele-Shaw cell, Phys. Fluids, 28, 26-30, (1985) · doi:10.1063/1.865195
[58] Pinkus, O.; Sternlicht, B., Theory of Hydrodynamic Lubrication, (1961), McGraw-Hill Book · Zbl 0100.23001
[59] Pohlhausen, K., Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht, Z. Angew. Math. Mech., 1, 252-268, (1921) · JFM 48.0968.02 · doi:10.1002/zamm.19210010402
[60] Potter, M. C.; Graber, E., Stability of plane Poiseuille flow with heat transfer, Phys. Fluids, 15, 1, 387-391, (1972) · Zbl 0232.76047 · doi:10.1063/1.1693921
[61] Prandtl, L., Über Flussigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des III, Internationalen Mathematiker-Kongresses Heidelberg, 484-491, (1904), B. G. Teubner · JFM 36.0800.02
[62] Prata, A. T.; Pilichi, C. D. M.; Ferreira, R. T. S., Local heat transfer in axially feeding radial flow between parallel disks, Trans. ASME J. Heat Transfer, 117, 47-53, (1995) · doi:10.1115/1.2822321
[63] Qasaimeh, M. A.; Gervais, T.; Juncker, D., Microfluidic quadrupole and floating concentration gradient, Nat. Commun., 2, 464, (2011) · doi:10.1038/ncomms1471
[64] Raal, J. D., Radial source flow between parallel disks, J. Fluid Mech., 85, 401-416, (1978) · Zbl 0374.76022 · doi:10.1017/S0022112078000701
[65] Rauseo, S. N.; Barnes, P. D. Jr; Maher, J. V., Development of radial fingering patterns, Phys. Rev. A, 35, 3, 1245-1251, (1987) · doi:10.1103/PhysRevA.35.1245
[66] Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp tower’s experiment, including an experimental determination of the viscosity of olive oil, Phil. Trans. R. Soc. Lond., 177, 157-235, (1886) · JFM 18.0946.04 · doi:10.1098/rstl.1886.0005
[67] Richardson, S., Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech., 56, 609-618, (1972) · Zbl 0256.76024 · doi:10.1017/S0022112072002551
[68] Richardson, S., Some Hele-Shaw flows with time-dependent free boundaries, J. Fluid Mech., 102, 263-278, (1981) · Zbl 0451.76015 · doi:10.1017/S0022112081002632
[69] Sameen, A.; Govindarajan, R., The effect of wall heating on instability of channel flow, J. Fluid Mech., 577, 417-442, (2007) · Zbl 1110.76018 · doi:10.1017/S0022112007004636
[70] Savage, S. B., Laminar radial flow between parallel plates, J. Appl. Mech., 31, 594-596, (1964) · Zbl 0128.20306 · doi:10.1115/1.3629719
[71] Scholtz, M. T.; Trass, O., Mass transfer in a nonuniform impinging jet. Part II. Boundary layer flow-mass transfer, AIChE J., 16, 1, 90-96, (1970) · doi:10.1002/aic.690160118
[72] Shäfer, P.; Herwig, H., Stability of plane Poiseuille flow with temperature dependent viscosity, Intl J. Heat Mass Transfer, 36, 9, 2441-2448, (1993) · Zbl 0776.76030 · doi:10.1016/S0017-9310(05)80127-9
[73] Shah, R. K.; London, A. L., Laminar Flow Forced Convection in Ducts, (1978), Academic Press
[74] Stevenson, J. F., Heat and mass transfer in radial flow, Chem. Engng Sci., 31, 12, 1225-1226, (1976) · doi:10.1016/0009-2509(76)85043-9
[75] Stewart, W. E.; Prober, R., Heat transfer and diffusion in wedge flows with rapid mass transfers, Intl J. Heat Mass Transfer, 5, 1149-1163, (1962) · doi:10.1016/0017-9310(62)90191-6
[76] Wall, D. P.; Nagata, M., Nonlinear equilibrium solutions for the channel flow of fluid with temperature-dependent viscosity, J. Fluid Mech., 406, 1-26, (2000) · Zbl 0987.76033 · doi:10.1017/S002211209900748X
[77] Wall, D. P.; Wilson, S. K., The linear stability of channel flow of fluid with temperature-dependent viscosity, J. Fluid Mech., 323, 107-132, (1996) · Zbl 0886.76030 · doi:10.1017/S0022112096000869
[78] Woolard, H. W., A theoretical analysis of the viscous flow in a narrowly spaced radial diffuser, Trans. ASME J. Appl. Mech., 24, 1, 9-15, (1957) · Zbl 0077.38705
[79] Yao, L.-S.; Berger, S. A., Flow in heated curved pipes, J. Fluid Mech., 88, 339-354, (1978) · Zbl 0381.76028 · doi:10.1017/S0022112078002141
[80] Zhang, M.; Koplik, J., Tracer dispersion in three-dimensional multipole flows, Phys. Rev. E, 56, 4, 4244-4258, (1997)
[81] Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J., Form, shape and function: segmented blood flow in the choriocapillaris, Sci. Rep., 6, 35754, (2016) · doi:10.1038/srep35754
[82] Zouache, M. A.; Eames, I.; Luthert, P. J., Blood flow in the choriocapillaris, J. Fluid Mech., 774, 37-66, (2015) · doi:10.1017/jfm.2015.243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.