×

Environmental subsidy and the choice of green technology in the presence of green consumers. (English) Zbl 1380.90250

Summary: In this paper, we present a study on a government using subsidy policy to motivate firms’ adoption of green emissions-reducing technology when consumers are environmentally discerning. We consider two profit-maximizing firms selling two products in a price and pollution sensitive market. The products differ only in their manufacturing costs, selling prices and the amount of pollutant emissions per unit of product. The objective of each firm is to determine the selling prices of the products, taking into account the impact of green technology on costs and customer demands. Two cases are considered: (1) the government has limited budget and can choose only one firm at most to provide subsidy; (2) the government has sufficient budget and can choose both firms to provide subsidy. We discuss which firm should be selected in each case and in which situation the firm has incentive to invest in the green technology. We also show that the green technology level, environmental improvement coefficient and unit cost increase coefficient play important roles in the government subsidy strategy.

MSC:

90C30 Nonlinear programming
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acaravci, A., & Ozturk, I. (2010). On the relationship between energy consumption, CO \[_22\] emissions and economic growth in Europe. Energy, 35(12), 5412-5420. · doi:10.1016/j.energy.2010.07.009
[2] Albino, V., Balice, A., & Dangelico, R. M. (2009). Environmental strategies and green product development: an overview on sustainability-driven companies. Business Strategy and the Environment, 18(2), 83-96. · doi:10.1002/bse.638
[3] Ang, J. B. (2007). CO \[_22\] emissions, energy consumption, and output in France. Energy Policy, 35(10), 4772-4778. · doi:10.1016/j.enpol.2007.03.032
[4] Apergis, N., & Payne, J. E. (2009). CO \[_22\] emissions, energy usage, and output in central America. Energy Policy, 37(8), 3282-3286. · doi:10.1016/j.enpol.2009.03.048
[5] Arouri, M. E. H., Ben Youssef, A., M’henni, H., & Rault, C. (2012). Energy consumption, economic growth and CO \[_22\] emissions in Middle East and North African countries. Energy Policy, 45, 342-349. · doi:10.1016/j.enpol.2012.02.042
[6] Bansal, S. (2008). Choice and design of regulatory instruments in the presence of green consumers. Resource and Energy Economics, 30(3), 345-368. · doi:10.1016/j.reseneeco.2008.01.001
[7] Chen, C. (2001). Design for the environment: a quality-based model for green product development. Management Science, 47(2), 250-263. · doi:10.1287/mnsc.47.2.250.9841
[8] Chen, C., & Zhang, J. (2013). Green product design with engineering tradeoffs under technology efficient frontiers: Analytical results and empirical tests. IEEE Transactions on Engineering Management, 60(2), 340-352. · doi:10.1109/TEM.2012.2212199
[9] Drake, D., Kleindorfer, P. R., & Van Wassenhove, L. N. (2010). Technology choice and capacity investment under emissions regulation. Working paper, INSEAD. http://www.insead.edu/facultyresearch/research/doc.cfm?did=46205. Accessed 20 Jan 2016.
[10] Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2015). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’ system. Annals of Operations Research, 228(1), 135-149. · Zbl 1320.91113
[11] Du, S., Zhu, L., Liang, L., & Ma, F. (2013). Emission-dependent supply chain and environment-policy-making in the ‘cap-and-trade’ system. Energy Policy, 57, 61-67. · doi:10.1016/j.enpol.2012.09.042
[12] Fischer, C., Parry, I. W., & Pizer, W. A. (2003). Instrument choice for environmental protection when technological innovation is endogenous. Journal of Environmental Economics and Management, 45(3), 523-545. · Zbl 1040.91509 · doi:10.1016/S0095-0696(03)00002-0
[13] Foss, M. M., Gonzales, E., & Noyen, H. (1999). Ford motor company. Corporate incentives and environmental decision making (pp. 35-52). Houston, Tx: Houston Advanced Research Center.
[14] Galinato, G. I., & Yoder, J. K. (2010). An integrated tax-subsidy policy for carbon emission reduction. Resource and Energy Economics, 32(3), 310-326. · doi:10.1016/j.reseneeco.2009.10.001
[15] Gil-Moltó, M. J., & Varvarigos, D. (2013). Emission taxes and the adoption of cleaner technologies: The case of environmentally conscious consumers. Resource and Energy Economics, 35(4), 486-504. · doi:10.1016/j.reseneeco.2013.04.006
[16] Goulder, L. H., Hafstead, M. A. C., & Dworsky, M. (2010). Impacts of alternative emissions allowance allocation methods under a federal cap-and-trade program. Journal of Environmental Economics and Management, 60(3), 161-181. · doi:10.1016/j.jeem.2010.06.002
[17] Gong, X., & Zhou, S. X. (2013). Optimal production planning with emissions trading. Operations Research, 61(4), 908-924. · Zbl 1291.91171 · doi:10.1287/opre.2013.1189
[18] Gray, W. B., & Shadbegian, R. J. (1998). Environmental regulation, investment timing, and technology choice. The Journal of Industrial Economics, 46(2), 235-256. · doi:10.1111/1467-6451.00070
[19] Hammar, H., & Löfgren, Å. (2010). Explaining adoption of end of pipe solutions and clean technologies-determinants of firms’ investments for reducing emissions to air in four sectors in Sweden. Energy Policy, 38(7), 3644-3651. · doi:10.1016/j.enpol.2010.02.041
[20] He, P., Zhang, W., Xu, H., & Bian, Y. (2014). Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner Production. 103, 241-248.
[21] Jaffe, A. B., Newell, R. G., & Stavins, R. N. (2002). Environmental policy and technological change. Environmental and Resource Economics, 22(1-2), 41-70. · doi:10.1023/A:1015519401088
[22] Jiang, Y., & Klabjan, D. (2012). Optimal emissions reduction investment under greenhouse gas emissions regulations. Working paper. Northwestern University.
[23] Krass, D., Nedorezov, T., & Ovchinnikov, A. (2013). Environmental taxes and the choice of green technology. Production and Operations Management, 22(5), 1035-1055.
[24] Kurk, F., & Eagan, P. (2008). The value of adding design-for-the-environment to pollution prevention assistance options. Journal of Cleaner Production, 16(6), 722-726. · doi:10.1016/j.jclepro.2007.02.022
[25] Letmathe, P., & Balakrishnan, N. (2005). Environmental considerations on the optimal product mix. European Journal of Operational Research, 167(2), 398-412. · Zbl 1074.90521 · doi:10.1016/j.ejor.2004.04.025
[26] Levi, M. D., & Nault, B. R. (2004). Converting technology to mitigate environmental damage. Management Science, 50(8), 1015-1030. · doi:10.1287/mnsc.1040.0238
[27] MacKenzie, I. A., & Ohndorf, M. (2012). Cap-and-trade, taxes, and distributional conflict. Journal of Environmental Economics and Management, 63(1), 51-65. · Zbl 1250.91074 · doi:10.1016/j.jeem.2011.05.002
[28] Mandell, S. (2008). Optimal mix of emissions taxes and cap-and-trade. Journal of Environmental Economics and Management, 56(2), 131-140. · Zbl 1151.91691 · doi:10.1016/j.jeem.2007.12.004
[29] Milliman, S. R., & Prince, R. (1989). Firm incentives to promote technological change in pollution control. Journal of Environmental economics and Management, 17(3), 247-265. · doi:10.1016/0095-0696(89)90019-3
[30] Raz, G., Druehl, C. T., & Blass, V. (2013). Design for the environment: Life-cycle approach using a newsvendor model. Production and Operations Management, 22(4), 940-957. · doi:10.1111/poms.12011
[31] Sharma, A., & Iyer, G. R. (2012). Resource-constrained product development: Implications for green marketing and green supply chains. Industrial Marketing Management, 41(4), 599-608. · doi:10.1016/j.indmarman.2012.04.007
[32] Subramanian, R., Gupta, S., & Talbot, B. (2007). Compliance strategies under permits for emissions. Production and Operations Management, 16(6), 763-779. · doi:10.1111/j.1937-5956.2007.tb00294.x
[33] Tarui, N., & Polasky, S. (2005). Environmental regulation with technology adoption, learning and strategic behavior. Journal of Environmental Economics and Management, 50(3), 447-467. · Zbl 1134.91543 · doi:10.1016/j.jeem.2005.01.004
[34] Uçak, H., Aslan, A., Yucel, F., & Turgut, A. (2015). A dynamic analysis of CO \[_22\] emissions and the GDP relationship: Empirical evidence from high-income OECD countries. Energy Sources, Part B: Economics, Planning and Policy, 10(1), 38-50. · doi:10.1080/15567249.2010.514586
[35] Zhang, X. P., & Cheng, X. M. (2009). Energy consumption, carbon emissions, and economic growth in China. Ecological Economics, 68(10), 2706-2712. · doi:10.1016/j.ecolecon.2009.05.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.