×

zbMATH — the first resource for mathematics

Proper time to the black hole singularity from thermal one-point functions. (English) Zbl 1461.83017
Summary: We argue that the proper time from the event horizon to the black hole singularity can be extracted from the thermal expectation values of certain operators outside the horizon. This works for fields which couple to higher-curvature terms, so that they can decay into two gravitons. To extract this proper time, it is necessary to vary the mass of the field.

MSC:
83C45 Quantization of the gravitational field
83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
81T28 Thermal quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] R.C. Myers, T. Sierens and W. Witczak-Krempa, A Holographic Model for Quantum Critical Responses, JHEP05 (2016) 073 [Addendum ibid.09 (2016) 066] [arXiv:1602.05599] [INSPIRE]. · Zbl 1388.83306
[2] Kraus, P.; Maloney, A., A cardy formula for three-point coefficients or how the black hole got its spots, JHEP, 05, 160 (2017) · Zbl 1380.81336
[3] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[4] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[5] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[6] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The Black hole singularity in AdS/CFT, JHEP, 02, 014 (2004)
[7] Cordova, C.; Maldacena, J.; Turiaci, GJ, Bounds on OPE Coefficients from Interference Effects in the Conformal Collider, JHEP, 11, 032 (2017) · Zbl 1383.81196
[8] Meltzer, D.; Perlmutter, E., Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP, 07, 157 (2018) · Zbl 1395.83092
[9] Freedman, DZ; Mathur, SD; Matusis, A.; Rastelli, L., Correlation functions in the CFT_d/AdS_d+1correspondence, Nucl. Phys. B, 546, 96 (1999) · Zbl 0944.81041
[10] Iliesiu, L.; Koloğlu, M.; Mahajan, R.; Perlmutter, E.; Simmons-Duffin, D., The Conformal Bootstrap at Finite Temperature, JHEP, 10, 070 (2018) · Zbl 1402.81226
[11] Gobeil, Y.; Maloney, A.; Ng, GS; Wu, J-q, Thermal Conformal Blocks, SciPost Phys., 7, 015 (2019)
[12] Mizera, S.; Pokraka, A., From Infinity to Four Dimensions: Higher Residue Pairings and Feynman Integrals, JHEP, 02, 159 (2020) · Zbl 1435.81079
[13] El-Showk, S.; Papadodimas, K., Emergent Spacetime and Holographic CFTs, JHEP, 10, 106 (2012)
[14] Kulaxizi, M.; Ng, GS; Parnachev, A., Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys., 6, 065 (2019)
[15] Fitzpatrick, AL; Huang, K-W, Universal Lowest-Twist in CFTs from Holography, JHEP, 08, 138 (2019) · Zbl 1421.83100
[16] Li, Y-Z, Heavy-light Bootstrap from Lorentzian Inversion Formula, JHEP, 07, 046 (2020)
[17] Fitzpatrick, AL; Huang, K-W; Meltzer, D.; Perlmutter, E.; Simmons-Duffin, D., Model-dependence of minimal-twist OPEs in d > 2 holographic CFTs, JHEP, 11, 060 (2020) · Zbl 1456.83075
[18] M. Dodelson and H. Ooguri, Singularities of thermal correlators at strong coupling, arXiv:2010.09734 [INSPIRE].
[19] Witten, E., Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math., 50, 347 (2011) · Zbl 1337.81106
[20] Bargheer, T.; Minahan, JA; Pereira, R., Computing Three-Point Functions for Short Operators, JHEP, 03, 096 (2014) · Zbl 1333.81230
[21] D’Hoker, E.; Freedman, DZ; Rastelli, L., AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B, 562, 395 (1999) · Zbl 0958.81143
[22] Kraus, P.; Ooguri, H.; Shenker, S., Inside the horizon with AdS/CFT, Phys. Rev. D, 67, 124022 (2003)
[23] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.