×

zbMATH — the first resource for mathematics

Stringy canonical forms and binary geometries from associahedra, cyclohedra and generalized permutohedra. (English) Zbl 1456.83101
Summary: Stringy canonical forms are a class of integrals that provide \(\alpha\)’-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type \(A_n\) and \(B_n\) generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite \(\alpha\)’, and the configuration space is binary although the \(u\) equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type \(A_n\) and \(B_n\) integrals, which have perfect \(u\) equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.

MSC:
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] N. Arkani-Hamed, S. He and T. Lam, Stringy canonical forms, arXiv:1912.08707 [INSPIRE].
[2] L. Nilsson and M. Passare, Mellin transforms of multivariate rational functions, J. Geom. Anal.23 (2011) 24. · Zbl 1271.44001
[3] C. Berkesch, J. Forsgård and M. Passare, Euler-Mellin integrals and A-hypergeometric functions, Michigan Math. J.63 (2014) 101. · Zbl 1290.32008
[4] E. Panzer, Hepp’s bound for Feynman graphs and matroids, arXiv:1908.09820 [INSPIRE].
[5] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M_0,n (R), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE]. · Zbl 1216.11079
[6] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer, Japan (2011). · Zbl 1229.33001
[7] S. Mizera, Scattering amplitudes from intersection theory, Phys. Rev. Lett.120 (2018) 141602 [arXiv:1711.00469] [INSPIRE].
[8] P. Mastrolia and S. Mizera, Feynman integrals and intersection theory, JHEP02 (2019) 139 [arXiv:1810.03818] [INSPIRE]. · Zbl 1411.81093
[9] S. Mizera and A. Pokraka, From infinity to four dimensions: higher residue pairings and Feynman integrals, JHEP02 (2020) 159 [arXiv:1910.11852] [INSPIRE]. · Zbl 1435.81079
[10] F. Brown and C. Dupont, Single-valued integration and double copy, arXiv:1810.07682 [INSPIRE].
[11] N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering forms and the positive geometry of kinematics, color and the worldsheet, JHEP05 (2018) 096 [arXiv:1711.09102] [INSPIRE]. · Zbl 1391.81200
[12] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE]. · Zbl 1391.81198
[13] N. Arkani-Hamed, Y. Bai and T. Lam, Positive geometries and canonical forms, JHEP11 (2017) 039 [arXiv:1703.04541] [INSPIRE]. · Zbl 1383.81273
[14] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE]. · Zbl 1391.81198
[15] N. Arkani-Hamed, S. He, T. Lam and H. Thomas, Binary geometries, generalized particles and strings, and cluster algebras, arXiv:1912.11764 [INSPIRE].
[16] N. Arkani-Hamed, S. He and T. Lam, Cluster configuration spaces of finite type, arXiv:2005.11419 [INSPIRE].
[17] G. Salvatori, 1-loop amplitudes from the halohedron, JHEP12 (2019) 074 [arXiv:1806.01842] [INSPIRE].
[18] N. Arkani-Hamed, S. He, G. Salvatori and H. Thomas, Causal diamonds, cluster polytopes and scattering amplitudes, arXiv:1912.12948 [INSPIRE].
[19] S. Fomin and A. Zelevinsky, Y systems and generalized associahedra, Ann. Math.158 (2003) 977 [hep-th/0111053] [INSPIRE]. · Zbl 1057.52003
[20] N. Arkani-Hamed, T. Lam and M. Spradlin, Positive configuration space, arXiv:2003.03904 [INSPIRE].
[21] A. Postnikov, Permutohedra, associahedra and beyond, Int. Math. Res. Not.2009 (2009) 1026 [math.CO/0507163].
[22] V. Bazier-Matte, G. Douville, K. Mousavand, H. Thomas and E. Yıldırım, ABHY associahedra and Newton polytopes of F -polynomials for finite type cluster algebras, arXiv:1808.09986 [INSPIRE].
[23] J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lect. Notes Math.1179 (1986) 312. · Zbl 0582.20030
[24] A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, Documenta Math.13 (2008) 207 [math.CO/0609184]. · Zbl 1167.05005
[25] Z. Li and C. Zhang, Moduli space of paired punctures, cyclohedra and particle pairs on a circle, JHEP05 (2019) 029 [arXiv:1812.10727] [INSPIRE].
[26] X. Gao, S. He and Y. Zhang, Labelled tree graphs, Feynman diagrams and disk integrals, JHEP11 (2017) 144 [arXiv:1708.08701] [INSPIRE]. · Zbl 1383.81322
[27] S. He, G. Yan, C. Zhang and Y. Zhang, Scattering forms, worldsheet forms and amplitudes from subspaces, JHEP08 (2018) 040 [arXiv:1803.11302] [INSPIRE]. · Zbl 1396.81207
[28] N. Early, Generalized permutohedra, scattering amplitudes, and a cubic three-fold, arXiv:1709.03686 [INSPIRE].
[29] N. Early, Generalized permutohedra in the kinematic space, arXiv:1804.05460 [INSPIRE]. · Zbl 1066.06002
[30] S. He and C. Zhang, Notes on scattering amplitudes as differential forms, JHEP10 (2018) 054 [arXiv:1807.11051] [INSPIRE]. · Zbl 1402.81254
[31] P. Banerjee, A. Laddha and P. Raman, Stokes polytopes: the positive geometry for 𝜙^4interactions, JHEP08 (2019) 067 [arXiv:1811.05904] [INSPIRE]. · Zbl 1421.81152
[32] P. Raman, The positive geometry for 𝜙^pinteractions, JHEP10 (2019) 271 [arXiv:1906.02985] [INSPIRE].
[33] F. Chapoton, Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci.18 (2015) [arXiv:1505.05990] · Zbl 1401.06002
[34] Y. Baryshnikov, On stokes sets, in New developments in singularity theory, Springer, Dordrecht, The Netherlands (2001), pg. 65. · Zbl 1065.58028
[35] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, Springer, Berlin, Heidelberg, Germany (2000). · Zbl 0946.13021
[36] I. Gelfand, M. Kapranov and A. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math.84 (1990) 255. · Zbl 0741.33011
[37] L. de la Cruz, Feynman integrals as A-hypergeometric functions, JHEP12 (2019) 123 [arXiv:1907.00507] [INSPIRE]. · Zbl 1431.81061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.