×

zbMATH — the first resource for mathematics

Decomposition of Feynman integrals by multivariate intersection numbers. (English) Zbl 1461.81044
Summary: We present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, employing multivariate intersection numbers. We discuss a recursive algorithm for the computation of multivariate intersection numbers, and provide three different approaches for a direct decomposition of Feynman integrals, which we dub the straight decomposition, the bottom-up decomposition, and the top-down decomposition. These algorithms exploit the unitarity structure of Feynman integrals by computing intersection numbers supported on cuts, in various orders, thus showing the synthesis of the intersection-theory concepts with unitarity-based methods and integrand decomposition. We perform explicit computations to exemplify all of these approaches applied to Feynman integrals, paving a way towards potential applications to generic multi-loop integrals.

MSC:
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81V05 Strong interaction, including quantum chromodynamics
81U05 \(2\)-body potential quantum scattering theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Mastrolia, P.; Mizera, S., Feynman Integrals and Intersection Theory, JHEP, 02, 139 (2019) · Zbl 1411.81093
[2] Frellesvig, H., Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers, JHEP, 05, 153 (2019) · Zbl 1416.81198
[3] Frellesvig, H.; Gasparotto, F.; Mandal, MK; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Vector Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett., 123, 201602 (2019) · Zbl 1416.81198
[4] Cho, K.; Matsumoto, K., Intersection theory for twisted cohomologies and twisted Riemann’s period relations I, Nagoya Math. J., 139, 67 (1995) · Zbl 0856.32015
[5] Matsumoto, K., Quadratic Identities for Hypergeometric Series of Type (k, l), Kyushu J. Math., 48, 335 (1994) · Zbl 0839.33007
[6] Matsumoto, K., Intersection numbers for logarithmic k-forms, Osaka J. Math., 35, 873 (1998) · Zbl 0937.32013
[7] Ohara, K.; Sugiki, Y.; Takayama, N., Quadratic Relations for Generalized Hypergeometric Functions_pF_p−1, Funkcial. Ekvac., 46, 213 (2003) · Zbl 1162.33309
[8] Goto, Y., Twisted Cycles and Twisted Period Relations for Lauricella’s Hypergeometric Function F_C, Int. J. Math., 24, 1350094 (2013) · Zbl 1285.33011
[9] Goto, Y.; Matsumoto, K., The monodromy representation and twisted period relations for Appell’s hypergeometric function F_4, Nagoya Math. J., 217, 61 (2015) · Zbl 1327.32001
[10] Goto, Y., Twisted period relations for Lauricella’s hypergeometric functions F_A, Osaka J. Math., 52, 861 (2015) · Zbl 1336.33031
[11] Goto, Y., Intersection Numbers and Twisted Period Relations for the Generalized Hypergeometric Function_m+1F_m, Kyushu J. Math., 69, 203 (2015) · Zbl 1318.33009
[12] Mizera, S., Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett., 120, 141602 (2018)
[13] S.-J. Matsubara-Heo and N. Takayama, An algorithm of computing cohomology intersection number of hypergeometric integrals, arXiv:1904.01253.
[14] S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, Ph.D. Thesis, Princeton, Inst. Advanced Study (2020) [DOI] [arXiv:1906.02099] [INSPIRE]. · Zbl 1457.81067
[15] Abreu, S.; Britto, R.; Duhr, C.; Gardi, E.; Matthew, J., From positive geometries to a coaction on hypergeometric functions, JHEP, 02, 122 (2020) · Zbl 1435.81075
[16] Abreu, S.; Britto, R.; Duhr, C.; Gardi, E.; Matthew, J., Generalized hypergeometric functions and intersection theory for Feynman integrals, PoS, RACOR2019, 067 (2019)
[17] Mizera, S.; Pokraka, A., From Infinity to Four Dimensions: Higher Residue Pairings and Feynman Integrals, JHEP, 02, 159 (2020) · Zbl 1435.81079
[18] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601 (2013)
[19] Chen, J.; Jiang, X.; Xu, X.; Yang, LL, Constructing canonical Feynman integrals with intersection theory, Phys. Lett. B, 814, 136085 (2021)
[20] S. Weinzierl, On the computation of intersection numbers for twisted cocycles, arXiv:2002.01930 [INSPIRE].
[21] Kaderli, A., A note on the Drinfeld associator for genus-zero superstring amplitudes in twisted de Rham theory, J. Phys. A, 53, 415401 (2020)
[22] Kalyanapuram, N.; Jha, RG, Positive Geometries for all Scalar Theories from Twisted Intersection Theory, Phys. Rev. Res., 2, 033119 (2020)
[23] Weinzierl, S., Correlation functions on the lattice and twisted cocycles, Phys. Lett. B, 805, 135449 (2020) · Zbl 1436.81081
[24] Chetyrkin, KG; Tkachov, FV, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B, 192, 159 (1981)
[25] Broadhurst, D.; Mellit, A., Perturbative quantum field theory informs algebraic geometry, PoS, LL2016, 079 (2016)
[26] Broadhurst, D., Feynman integrals, L-series and Kloosterman moments, Commun. Num. Theor. Phys., 10, 527 (2016) · Zbl 1362.81072
[27] Broadhurst, D.; Roberts, DP, Quadratic relations between Feynman integrals, PoS, LL2018, 053 (2018)
[28] Zhou, Y., Wick rotations, Eichler integrals, and multi-loop Feynman diagrams, Commun. Num. Theor. Phys., 12, 127 (2018) · Zbl 1393.81029
[29] Zhou, Y., Wrońskian factorizations and Broadhurst-Mellit determinant formulae, Commun. Num. Theor. Phys., 12, 355 (2018) · Zbl 1393.81016
[30] J. Fresán, C. Sabbah and J.-D. Yu, Quadratic relations between periods of connections, arXiv:2005.11525.
[31] J. Fresán, C. Sabbah and J.-D. Yu, Quadratic relations between Bessel moments, arXiv:2006.02702 [INSPIRE].
[32] Lee, RN, Symmetric E- and (E+1/2)-forms and quadratic constraints in “elliptic” sectors, JHEP, 10, 176 (2018)
[33] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B, 763, 147 (2007) · Zbl 1116.81067
[34] Ellis, RK; Giele, WT; Kunszt, Z., A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP, 03, 003 (2008)
[35] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B, 822, 270 (2009) · Zbl 1196.81234
[36] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE]. · Zbl 1397.81011
[37] Zhang, Y., Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP, 09, 042 (2012) · Zbl 1397.81183
[38] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett. B, 718, 173 (2012)
[39] Mastrolia, P.; Ossola, G., On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes, JHEP, 11, 014 (2011) · Zbl 1306.81357
[40] Badger, S.; Frellesvig, H.; Zhang, Y., A Two-Loop Five-Gluon Helicity Amplitude in QCD, JHEP, 12, 045 (2013)
[41] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B, 435, 59 (1995)
[42] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B, 425, 217 (1994) · Zbl 1049.81644
[43] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B, 725, 275 (2005) · Zbl 1178.81202
[44] Britto, R.; Buchbinder, E.; Cachazo, F.; Feng, B., One-loop amplitudes of gluons in SQCD, Phys. Rev. D, 72, 065012 (2005)
[45] Britto, R.; Feng, B.; Mastrolia, P., The Cut-constructible part of QCD amplitudes, Phys. Rev. D, 73, 105004 (2006)
[46] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett. B, 645, 213 (2007)
[47] Mastrolia, P., On Triple-cut of scattering amplitudes, Phys. Lett. B, 644, 272 (2007) · Zbl 1248.81135
[48] Bjerrum-Bohr, NEJ; Dunbar, DC; Perkins, WB, Analytic structure of three-mass triangle coefficients, JHEP, 04, 038 (2008) · Zbl 1246.81169
[49] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev. D, 75, 125019 (2007)
[50] Badger, SD, Direct Extraction Of One Loop Rational Terms, JHEP, 01, 049 (2009) · Zbl 1243.81219
[51] Mastrolia, P., Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett. B, 678, 246 (2009)
[52] Nigel Glover, EW; Williams, C., One-Loop Gluonic Amplitudes from Single Unitarity Cuts, JHEP, 12, 067 (2008) · Zbl 1329.81283
[53] Britto, R.; Feng, B., Solving for tadpole coefficients in one-loop amplitudes, Phys. Lett. B, 681, 376 (2009)
[54] Britto, R.; Mirabella, E., Single Cut Integration, JHEP, 01, 135 (2011) · Zbl 1214.81295
[55] Kosower, DA; Larsen, KJ, Maximal Unitarity at Two Loops, Phys. Rev. D, 85, 045017 (2012)
[56] E. R. Speer, Generalized Feynman Amplitudes, Princeton University Press (1969).
[57] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165 (2013) · Zbl 1342.81139
[58] K. Matsumoto, Relative twisted homology and cohomology groups associated with Lauricella’s F_D, arXiv:1804.00366.
[59] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Computational Commutative Algebra, Springer Berlin Heidelberg (2008). · Zbl 0956.13008
[60] Aluffi, P.; Marcolli, M., Feynman motives of banana graphs, Commun. Num. Theor. Phys., 3, 1 (2009) · Zbl 1171.81384
[61] Marcolli, M., Motivic renormalization and singularities, Clay Math. Proc., 11, 409 (2010) · Zbl 1218.81081
[62] Bitoun, T.; Bogner, C.; Klausen, RP; Panzer, E., Feynman integral relations from parametric annihilators, Lett. Math. Phys., 109, 497 (2019) · Zbl 1412.81141
[63] Aomoto, K.; Kita, M., Theory of Hypergeometric Functions (2011), Springer Japan: Springer Monographs in Mathematics, Springer Japan · Zbl 1229.33001
[64] Kita, M.; Yoshida, M., Intersection Theory for Twisted Cycles, Math. Nachr., 166, 287 (1994) · Zbl 0847.32043
[65] S. Mizera, Status of Intersection Theory and Feynman Integrals, PoSMA2019 (2019) 016 [arXiv:2002.10476] [INSPIRE]. · Zbl 1411.81093
[66] S.-J. Matsubara-Heo, Euler and laplace integral representations of gkz hypergeometric functions, arXiv:1904.00565. · Zbl 07307531
[67] Y. Goto and S.-J. Matsubara-Heo, Homology and cohomology intersection numbers of gkz systems, arXiv:2006.07848.
[68] Argeri, M., Magnus and Dyson Series for Master Integrals, JHEP, 03, 082 (2014) · Zbl 1333.81379
[69] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D, 93, 041701 (2016)
[70] Primo, A.; Tancredi, L., On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B, 916, 94 (2017) · Zbl 1356.81136
[71] Frellesvig, H.; Papadopoulos, CG, Cuts of Feynman Integrals in Baikov representation, JHEP, 04, 083 (2017) · Zbl 1378.81039
[72] Harley, M.; Moriello, F.; Schabinger, RM, Baikov-Lee Representations Of Cut Feynman Integrals, JHEP, 06, 049 (2017) · Zbl 1380.81132
[73] Smirnov, AV, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun., 189, 182 (2015) · Zbl 1344.81030
[74] R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[75] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
[76] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira — A Feynman integral reduction program, Comput. Phys. Commun., 230, 99 (2018)
[77] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun.180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].
[78] Vermaseren, JAM, Axodraw, Comput. Phys. Commun., 83, 45 (1994) · Zbl 1114.68598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.