×

An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field. (English) Zbl 1393.35152

Based on a new multiplicative Sobolev inequality and on a detailed analysis, the author investigates the regularity of solutions to the following homogeneous Navier-Stokes system in \({R}^3\) \[ \partial_t u +(u\cdot \nabla )u-\Delta u + \nabla \pi =0, \;\;\nabla u=0. \] Specifically, the author proves that for every initial velocity field \(u_0\in L^2({R}^3)\) with \(\nabla u_0=0\) and every \(T>0\), if the corresponding weak solution \(u\) satisfies \[ \frac{\partial u}{\partial x_3}\in L^p(0,T;L^q({R}^3)), \;\frac{2}{p}+\frac{3}{q}=2, \;\frac{3\sqrt{37}}{4}-3\leq q\leq 3, \] then \(u\) is smooth in \((0,T]\times {R}^3\). Thus some previous regularity results (mentioned in the paper) are improved.

MSC:

35Q30 Navier-Stokes equations
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \[\mathbb{R}^nRn\]. Chin. Ann. Math. Ser. B 16, 407-412 (1995) · Zbl 0837.35111
[2] Cao, C.S.: Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin. Dyn. Syst. 26, 1141-1151 (2010) · Zbl 1186.35136 · doi:10.3934/dcds.2010.26.1141
[3] Cao, C.S., Titi, E.S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57, 2643-2661 (2008) · Zbl 1159.35053 · doi:10.1512/iumj.2008.57.3719
[4] Cao, C.S., Titi, E.S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202, 919-932 (2011) · Zbl 1256.35051 · doi:10.1007/s00205-011-0439-6
[5] Cao, C.S., Wu, J.H.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263-2274 (2010) · Zbl 1190.35046 · doi:10.1016/j.jde.2009.09.020
[6] Chemin, J.Y., Zhang, P.: On the critical one component regularity for the 3-D Navier-Stokes equations. arXiv:1310.6442 [math.AP] 24 Oct (2013) · Zbl 1159.35053
[7] Constantin, P., Fioas, C.: Navier-Stokes equations. Chicago Lectures in Mathematics Series (1988) · Zbl 1364.35290
[8] Eskauriaza, L., Serëgin, G.A., Šverák, \[V.: L_{3,\infty }\] L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211-250 (2003) · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[9] Hopf, E.: Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nachr. 4, 213-321 (1951) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[10] Jia, X.J., Zhou, Y.: A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure. J. Math. Anal. Appl. 396, 345-350 (2012) · Zbl 1256.35060 · doi:10.1016/j.jmaa.2012.06.016
[11] Jia, X.J., Zhou, Y.: Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. Nonlinear Anal. Real World Appl. 15, 239-245 (2014) · Zbl 1297.35168 · doi:10.1016/j.nonrwa.2013.08.002
[12] Jia, X.J., Zhou, Y.: Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of \[3\times 33\]×3 mixture matrices. Nonlinearity 28, 3289-3307 (2015) · Zbl 1326.35276 · doi:10.1088/0951-7715/28/9/3289
[13] Jia, X.J., Zhou, Y.: Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinet. Relat. Models 7, 291-304 (2014) · Zbl 1304.35549 · doi:10.3934/krm.2014.7.291
[14] Jia, X.J., Zhou, Y.: Regularity criteria for the 3D MHD equations via partial derivatives. Kinet. Relat. Models 5, 505-516 (2012) · Zbl 1254.35192 · doi:10.3934/krm.2012.5.505
[15] Jia, X.J., Zhou, Y.: Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal. Real World Appl. 13, 410-418 (2012) · Zbl 1239.35032 · doi:10.1016/j.nonrwa.2011.07.055
[16] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19, 453-469 (2006) · Zbl 1149.35069 · doi:10.1088/0951-7715/19/2/012
[17] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48, 065203 (2007) · Zbl 1144.81373 · doi:10.1063/1.2395919
[18] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow, Moscow (1970) · Zbl 0184.52603
[19] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[20] Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics. Quad. Mat. 10, 163-183 (2002) · Zbl 1050.35073
[21] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J. Math. Fluid Mech. 13, 341-353 (2011) · Zbl 1270.35354 · doi:10.1007/s00021-010-0038-6
[22] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containg gradient of the velocity. Appl. Math. 49, 483-493 (2004) · Zbl 1099.35101 · doi:10.1023/B:APOM.0000048124.64244.7e
[23] Pokorný, M.: On the result of He concerning the smoothness of solutions to the Navier-Stokese equations. Electron. J. Differ. Equ. 2003, 1-8 (2003) · Zbl 1014.35073
[24] Prodi, G.: Un teorema di unicitá per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173-182 (1959) · Zbl 0148.08202 · doi:10.1007/BF02410664
[25] Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman and Hall, London (2002) · Zbl 1034.35093 · doi:10.1201/9781420035674
[26] Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187-195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[27] Skalak, Z.: On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104, 84-89 (2014) · Zbl 1291.35192 · doi:10.1016/j.na.2014.03.018
[28] Temam, R.: Navier-Stokes Equations, Theory and Numercial Analysis. AMS Chelsea Publishing, Chelsea (2001) · Zbl 0981.35001
[29] Zhang, Z.J.: A Serrin-type reuglarity criterion for the Navier-Stokes equations via one velocity component. Commun. Pure Appl. Anal. 12, 117-124 (2013) · Zbl 1278.35184 · doi:10.3934/cpaa.2013.12.117
[30] Zhang, Z.J.: A logarithmically improved regularity criterion for the 3D MHD system involving the velocity field in homogeneous Besov spaces. Ann. Pol. Math. 118, 51-57 (2016) · Zbl 1356.35072
[31] Zhang, Z.J., Alzahrani, F., Hayat, T., Zhou, Y.: Two new regularity criteria for the NavierCStokes equations via two entries of the velocity Hessian tensor. Appl. Math. Lett. 37, 124-130 (2014) · Zbl 1314.76028 · doi:10.1016/j.aml.2014.06.011
[32] Zhang, Z.J., Li, P., Yu, G.H.: Regularity criteria for the 3D MHD equations via one directional derivative of the pressure. J. Math. Anal. Appl. 401, 66-71 (2013) · Zbl 1364.35290 · doi:10.1016/j.jmaa.2012.11.022
[33] Zhang, Z.J., Yao, Z.A., Lu, M., Ni, L.D.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokese equations. J. Math. Phys. 52, 053103 (2011) · Zbl 1317.35180 · doi:10.1063/1.3589966
[34] Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl. 84, 1496-1514 (2005) · Zbl 1092.35081 · doi:10.1016/j.matpur.2005.07.003
[35] Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563-578 (2002) · Zbl 1166.35359
[36] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23, 1097-1107 (2010) · Zbl 1190.35179 · doi:10.1088/0951-7715/23/5/004
[37] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 123514 (2009) · Zbl 1373.35226 · doi:10.1063/1.3268589
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.