×

The wagon wheel illusions and models of orientation selection. (English) Zbl 1446.92063

Summary: We present an analysis of the wagon wheel illusions – classic psychophysical phenomena – in the context of a neural network model of orientation selectivity in the visual system. We find that both the continuous wagon wheel illusion (c-WWI) and the standard, stroboscopic wagon wheel illusion (WWI) can be explained by a recurrent model in which the cortex provides both excitatory and inhibitory feedback to a weakly tuned input from the lateral geniculate nucleus. Comparison of data from recent psychophysics experiments with theoretical predictions derived from the network dynamics leads to excellent agreement. Conversely, this agreement confirms the validity of the model and highlights the fact that the WWI can serve as a useful probe of the human striate cortex. We find that the WWI results from phase-locking in the visual system and that a circle map determines the dynamics of the illusion. Furthermore, our results suggest that the c-WWI is a consequence of continuous processing and cannot be used to support claims of discrete processing by the visual system.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
91E30 Psychophysics and psychophysiology; perception
PDFBibTeX XMLCite

References:

[1] Arnold, V. I. (1988). Geometrical methods in the theory of ordinary differential equations. New York: Springer. · Zbl 0648.34002
[2] Sillito, A. M., Kemp, J. A., Milson, J. A., & Berardi, N. (1980). A reevaluation of the mechanisms underlying simple cell orientation selectivity. Brain Research, 194, 517-520.
[3] Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462-473.
[4] Sclar, G., & Freeman, R. D. (1982). Invariance of orientation tuning with stimulus contrast. Experimental Brain Research, 46, 457-461.
[5] Schouten, J. F. (1967). Subjective stroboscopy and a model of visual movement detectors. In I. Wathen-Dunn (Ed.), Models for the perception of speech and visual form (pp. 44-45). Cambridge: MIT Press.
[6] Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of macaque. Journal of Physiology, 494, 757-771.
[7] Reid, R. C., & Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281-284.
[8] Purves, D., Paydarfar, J. A., & Andrews, T. J. (1996). The Wagon Wheel Illusion in movies and reality. Proceedings of National Academy of Sciences USA, 93(8), 3693-3697.
[9] Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215-229.
[10] Perez, R., & Glass, L. (1982). Bistability period doubling bifurcations and chaos in a periodically forced oscillator. Physics Letters, 90A, 441-443.
[11] Nelson, S., Toth, L., Sheth, B., & Sur, M. (1994). Orientation selectivity of cortical neurons during intra-cellular blockade of inhibition. Science, 265, 774-777.
[12] Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125-1139.
[13] McComas, A. J., & Cupido, C. M. (1999). The RULER model. Is this how the somatosensory cortex works? Clinical Neurophysiology, 110(11), 1987-1994.
[14] Martineau, P., Aguilar, M., & Glass, L. (2009). Predicting perception of the Wagon Wheel Illusion. Physical Review Letters, 103, 028701.
[15] Lund, J. S. (1987). Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A. Journal of Comparative Neurology, 257, 60-92.
[16] Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood: Roberts and Co.
[17] Kline, K., Holcombe, A. O., & Eagleman, D. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Research, 44, 2653-2658.
[18] Kline, K. A., & Eagleman, D. M. (2008). Evidence against the temporal subsampling account of illusory motion. Journal of Vision, 8(4), 13, 1-5.
[19] Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106-154.
[20] Holcombe, A. O., & Seizova-Cajic, T. (2008). Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli. Vision Research, 48, 1743-1757.
[21] Holcombe, A. O., Clifford, C. W. G., Eagleman, D. M., & Pakarian, P. (2005). Illusory motion reversal in tune with motion detectors. Trends in Cognitive Sciences, 9(12), 559-560.
[22] Hata, Y., Tsumoto, T., Sato, H., Hagihara, K., & Tamura, H. (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature, 335, 815-817.
[23] Glazier, J. A,, & Libchaber, A. (1988). Quasi-periodicity and dynamical systems. IEEE Transactions on Circuits and Systems, 35, 790-809.
[24] Glass, L., & Perez, R. (1982). Physical Review Letters, 48, 1772.
[25] Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Physical Review A, 29(3), 1948-1357.
[26] Glass, L., Guevara, M., Shrier, A., & Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. In Proc. of the Los Alamos conf. on ‘order in chaos,’ Physica 7D (pp. 89-103).
[27] Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature (London), 410, 277.
[28] Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable perception modeled as competing stochastic integrations at two levels. PLoS Computational Biology, 5(7), e1000430. doi:10.1371/journal.pcbi.1000430.
[29] Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in threedimensional space. II. Coding of the direction of movement by a neuronal population. Journal of Neuroscience, 8, 2928-2937.
[30] Finlay, D., Dodwell, P., & Caelli, T. (1984). Perception, 13, 237.
[31] Ferster, D., & Koch, C. (1987). Neuronal connections underlying orientation selectivity in cat visual cortex. Trends in Neurosciences, 10, 487-492.
[32] Faraday, M. (1831). J. R. Inst. Great Britain 1, 205. Reprinted in Experimental researches in chemistry and physics (p. 291). London: Taylor & Francis (1859).
[33] Eysel, U. T., Crook, J. M., & Machemer, H. F. (1990). GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Experimental Brain Research, 80, 626-630.
[34] Efron, R., & Lee, D. N. (1971). American Journal of Psychology, 84, 365.
[35] Edgerton, H. E. (1970). Electronic flash strobe. New York: McGraw-Hill.
[36] Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A., & Suarez, H. H. (1995). Recurrent excitation in neocortical circuits. Science, 269, 981-985.
[37] Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1998). Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: Reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. European Journal of Neuroscience, 10, 2056-2075.
[38] Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1997). GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity. Visual Neuroscience, 14, 141-158.
[39] Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119-126.
[40] Coullet, P., Tresser, C, & Arneodo, A. (1980). Transition to turbulence for doubly periodic flows. Physics Letters, 77A, (5), 327-331.
[41] Chung, S., & Ferster, D. (1998). Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron, 20, 1177-1189.
[42] Chapman, B., Zahs, K. R., & Stryker, M. P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in Ferret visual cortex. Journal of Neuroscience, 11, 1347-1358.
[43] Carpenter, R. H. S., & Blakemore, C. (1973). Interactions between orientations in human vision. Brain Research, 18, 287-303.
[44] Carandini, M., & Ringach, D. L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research, 37, 30613071.
[45] Brascamp, J. W., et al. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244-1256.
[46] Boyland, P. L. (1986). Bifurcations of circle maps: Arnol’d Tongues, bistability and rotation intervals. Communications in Mathematical Physics, 106, 353-381. · Zbl 0612.58032
[47] Bouma, H., & Andriessen, J. J. (1970). Induced changes in the perceived orientation of line segments. Vision Research, IO, 333-349.
[48] Bouma, H., & Andriessen, J. J. (1968). Perceived orientation of isolated line segments. Vision Research, 8, 493-507.
[49] Blakemore, C., Carpenter, R. H. S., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228, 237-260.
[50] Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of Computational Neuroscience, 4, 57-77.
[51] Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844-3848.
[52] Belair, J. (1986). Periodic pulsatile stimulation of a nonlinear oscillator. Journal of Mathematical Biology, 24, 217. · Zbl 0599.92001
[53] Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M, & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2, 295-309.
[54] Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge: Cambridge University Press. · Zbl 0702.58002
[55] Arbib, M. A. (Ed.) (2002). The handbook of brain theory and neural networks. Cambridge: MIT Press.
[56] Andrews, T., & Purves, D. (2005). The wagon-wheel illusion in continuous light. Trends in Cognitive Sciences, 9(6), 261-263.
[57] Andrews, D. P. (1967). Perception of contour orientation in the central fovea. Part I. Short lines. Vision Research, 7, 975-997.
[58] Andrews, D. P. (1965). Perception of contours in the central fovea. Nature, 205, 1218-1220.
[59] Ferster, D., Chung, S., & Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature, 380, 249-252.
[60] Wilson, H.
[61] Wallace, G. K. (1969). The critical distance of interaction in the Zollner illusion. Perception and Psychophysics, II, 261-264.
[62] VanRullen, R., Reddy, L., & Koch, C. (2006). The continuous Wagon Wheel Illusion is associated with changes in electroencephalogram power at 13Hz. The Journal of Neuroscience, 26(2), 502-507.
[63] VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proceedings of National Academy of Sciences of the United States of America, 102(14), 5291-5296.
[64] VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognition Science, 7(5), 207-213.
[65] Tsumoto, T., Eckart, W., & Creutzfeld, O. D. (1979). Modifications of orientation sensitivity of cat visual cortex neurons by removal of GABA mediated inhibition. Experimental Brain Research, 34, 351-363.
[66] Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908-5927.
[67] Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology, 49, 1303-1318.
[68] Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448-5465.
[69] Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., & Freeman R. D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology, 57, 773-786.
[70] Simpson, W. A., Shahani, U., & Manahilav, V. (2005). Illusory percepts of moving patterns due to discrete temporal sampling. Neuroscience Letters, 357(1), 23-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.