×

Black hole free energy during charged collapse: a numerical study. (English) Zbl 1348.83012

Summary: We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordström (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy \(F = E-T S\) of a Schwarzschild black hole at late times of the collapse (where \(E\) is the black hole mass, \(T\) the temperature and \(S\) the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy \(G = E-T S-\Phi_HQ\) where Q is the charge and \(\Phi_H\) the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the horizon. The entropy is gravitational in origin and one observes dynamically that it resides on the horizon. We also compare the numerical value of the interior Lagrangian to the expected analytical value of the interior Gibbs free energy for different initial states and we find that they agree to within 10-13%. The two values are approaching each other so that their difference decreases with more evolution time.

MSC:

83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Z. Gecse and S. Khlebnikov, Classical thermodynamics of gravitational collapse, Phys. Rev.D 77 (2008) 104003 [arXiv:0801.3662] [INSPIRE].
[2] B. Constantineau and A. Edery, Numerical thermodynamic studies of classical gravitational collapse in 3 + 1 and 4 + 1 dimensions, Phys. Rev.D 84 (2011) 084032 [arXiv:1103.5272] [INSPIRE].
[3] G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].
[4] S. Gao and J.P. Lemos, The covariant entropy bound in gravitational collapse, JHEP 04 (2004) 017 [hep-th/0403284] [INSPIRE]. · doi:10.1088/1126-6708/2004/04/017
[5] E. Greenwood, Time evolution of entropy in gravitational collapse, JCAP06 (2009) 032 [arXiv:0811.0816] [INSPIRE]. · doi:10.1088/1475-7516/2009/06/032
[6] E. Greenwood and D. Stojkovic, Hawking radiation as seen by an infalling observer, JHEP09 (2009) 058 [arXiv:0806.0628] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/058
[7] E. Greenwood, D.I. Podolsky and G.D. Starkman, Pre-Hawking radiation from a collapsing shell, JCAP11 (2011) 024 [arXiv:1011.2219] [INSPIRE]. · doi:10.1088/1475-7516/2011/11/024
[8] E. Greenwood, Hawking radiation from a Reisner-Nordstrom domain wall, JCAP01 (2010) 002 [arXiv:0910.0024] [INSPIRE]. · doi:10.1088/1475-7516/2010/01/002
[9] F. Pretorius, D. Vollick and W. Israel, An operational approach to black hole entropy, Phys. Rev.D 57 (1998) 6311 [gr-qc/9712085] [INSPIRE].
[10] C. Vaz and L. Witten, Quantum black holes from quantum collapse, Phys. Rev.D 64 (2001) 084005 [gr-qc/0104017] [INSPIRE].
[11] C. Vaz, Canonical quantization, conformal fields and the statistical entropy of the Schwarzschild black hole, Phys. Rev.D 61 (2000) 064017 [gr-qc/9903051] [INSPIRE].
[12] E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton U.K. (2007). · Zbl 1120.81001
[13] L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe, World Scientific Publishing, London U.K. (2005). · Zbl 1069.83005
[14] J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[15] A. Edery and B. Constantineau, Extremal black holes, gravitational entropy and nonstationary metric fields, Class. Quant. Grav.28 (2011) 045003 [arXiv:1010.5844] [INSPIRE]. · Zbl 1210.83024 · doi:10.1088/0264-9381/28/4/045003
[16] J. Ziprick and G. Kunstatter, Numerical study of black-hole formation in Painleve-Gullstrand coordinates, Phys. Rev.D 79 (2009) 101503 [arXiv:0812.0993] [INSPIRE].
[17] E. Poisson, A relativist’s toolkit, Cambridge University Press, Cambridge U.K. (2004). · Zbl 1058.83002 · doi:10.1017/CBO9780511606601
[18] P.R. Brady and J.D. Smith, Black hole singularities: a numerical approach, Phys. Rev. Lett.75 (1995) 1256 [gr-qc/9506067] [INSPIRE]. · Zbl 1020.83590 · doi:10.1103/PhysRevLett.75.1256
[19] S. Hod and T. Piran, Mass inflation in dynamical gravitational collapse of a charged scalar field, Phys. Rev. Lett.81 (1998) 1554 [gr-qc/9803004] [INSPIRE]. · doi:10.1103/PhysRevLett.81.1554
[20] Y. Oren and T. Piran, On the collapse of charged scalar fields, Phys. Rev.D 68 (2003) 044013 [gr-qc/0306078] [INSPIRE]. · Zbl 1244.83023
[21] F. Finelli and S. Khlebnikov, Large metric perturbations from rescattering, Phys. Lett.B 504 (2001) 309 [hep-ph/0009093] [INSPIRE]. · Zbl 0977.83109
[22] F. Finelli and S. Khlebnikov, Metric perturbations at reheating: the use of spherical symmetry, Phys. Rev.D 65 (2002) 043505 [hep-ph/0107143] [INSPIRE].
[23] H. Beauchesne and A. Edery, Emergence of thin shell structure during collapse in isotropic coordinates, Phys. Rev.D 85 (2012) 044056 [arXiv:1108.0449] [INSPIRE].
[24] E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev.D 41 (1990) 1796 [INSPIRE].
[25] M. Peskin and D. Scroeder, An introduction to quantum field theory, Westview Press, U.S.A. (1995).
[26] W.H. Press et al., Numerical recipes, Cambridge University Press, Cambridge U.K. (2007). · Zbl 1132.65001
[27] L. Baiotti et al., Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole, Phys. Rev.D 71 (2005) 024035 [gr-qc/0403029] [INSPIRE].
[28] I. Hawke, E. Schnetter, L. Baiotti and L. Rezzolla, Gravitational waves from the 3D collapse of a neutron star to a Kerr black hole, Comput. Phys. Commun.169 (2005) 374 [INSPIRE]. · Zbl 1196.83026 · doi:10.1016/j.cpc.2005.03.083
[29] R. Akhoury, D. Garfinkle and R. Saotome, Gravitational collapse of k-essence, JHEP04 (2011) 096 [arXiv:1103.0290] [INSPIRE]. · doi:10.1007/JHEP04(2011)096
[30] C.D. Leonard, J. Ziprick, G. Kunstatter and R.B. Mann, Gravitational collapse of K-essence Matter in Painlevé-Gullstrand coordinates, JHEP10 (2011) 028 [arXiv:1106.2054] [INSPIRE]. · Zbl 1303.83029 · doi:10.1007/JHEP10(2011)028
[31] C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett.85 (2000) 4438 [astro-ph/0004134] [INSPIRE]. · doi:10.1103/PhysRevLett.85.4438
[32] C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k essence, Phys. Rev.D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.