×

A nonlinear poroelastic theory of solid tumors with glycosaminoglycan swelling. (English) Zbl 1393.92023

Summary: Mechanics plays a crucial role in the growth, development, and therapeutics of tumors. In this paper, a nonlinear poroelastic theory is established to describe the mechanical behaviors of solid tumors. The free-swollen state of a tumor is chosen as the reference state, which enables us to avoid pursuing a dry and stress-free state that is hard to achieve for living tissues. Our results reveal that the compression resistance of a tumor is primarily attributed to glycosaminoglycan (GAG) swelling, and the compactness of cell aggregates is found to affect tumor consolidation. Over-expressed GAGs and dense cell aggregates can stiffen the tumor, a remodeling mechanism that makes the tumor with higher elastic modulus than its surrounding host tissues. Glycosaminoglycan chains also influence the transient mechanical response of the tumor by modulating the tissue permeability. The theoretical results show good agreement with relevant experimental observations. This study may not only deepen our understanding of tumorigenesis but also provide cues for developing novel anticancer strategies.

MSC:

92C50 Medical applications (general)
74L15 Biomechanical solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosi, D.; Pezzuto, S.; Riccobelli, D.; Stylianopoulos, T.; Ciarletta, P., Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth, J. Elast. (2017), doi:10.1007/s10659-016-9619-9 · Zbl 1373.74033
[2] Ateshian, G. A.; Likhitpanichkul, M.; Hung, C. T., A mixture theory analysis for passive transport in osmotic loading of cells, J. Biomech., 39, 464-475 (2006)
[3] Aukland, K.; Nicolaysen, G., Interstitial fluid volume: local regulatory mechanisms, Physiol. Rev., 61, 556-643 (1981)
[4] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[5] Butcher, D. T.; Alliston, T.; Weaver, V. M., A tense situation: forcing tumour progression, Nat. Rev. Cancer, 9, 108-122 (2009)
[6] Byrne, H.; Preziosi, L., Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol., 20, 341-366 (2003) · Zbl 1046.92023
[7] Chahine, N. O.; Chen, F. H.; Hung, C. T.; Ateshian, G. A., Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature, Biophys. J., 89, 1543-1550 (2005)
[8] Chaplain, M. A.J.; Graziano, L.; Preziosi, L., Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math Med Biol, 23, 197-229 (2006) · Zbl 1098.92037
[9] Chatelain, C.; Ciarletta, P.; Ben Amar, M., Morphological changes in early melanoma development: Influence of nutrients, growth inhibitors and cell-adhesion mechanisms, J. Theor. Biol., 290, 46-59 (2011) · Zbl 1397.92318
[10] Cheng, X.; Petsche, S. J.; Pinsky, P. M., A structural model for the in vivo human cornea including collagen-swelling interaction, J. R. Soc. Interface, 12, Article 20150241 pp. (2015)
[11] Ciarletta, P.; Foret, L.; Ben Amar, M., The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis, J. R. Soc. Interface, 8, 345-368 (2011)
[12] Coussy, O., Poromechanics (2004), John Wiley & Sons, Ltd
[13] DuFort, C. C.; DelGiorno, K. E.; Carlson, M. A.; Osgood, R. J.; Zhao, C., Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase, Biophys. J., 110, 2106-2119 (2016)
[14] Feng, X. Q.; Lee, P. V.S.; Lim, C. T., Preface: molecular, cellular, and tissue mechanobiology, Acta Mech. Sin., 33, 219-221 (2017) · Zbl 1372.74003
[15] Flory, P. I., Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51-61 (1942)
[16] Frantz, C.; Stewart, K. M.; Weaver, V. M., The extracellular matrix at a glance, J. Cell Sci., 123, 4195-4200 (2010)
[17] Fritsch, A.; Höckel, M.; Kiessling, T.; Nnetu, K. D.; Wetzel, F.; Zink, M.; Käs, J. A., Are biomechanical changes necessary for tumor progression?, Nat. Phys., 6, 730-732 (2010)
[18] Garikipati, K.; Arruda, E. M.; Grosh, K.; Narayanan, H.; Calve, S., A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics, J. Mech. Phys. Solids, 52, 1595-1625 (2004) · Zbl 1159.74381
[19] Giverso, C.; Preziosi, L., Modelling the compression and reorganization of cell aggregates, Math. Med. Biol., 29, 181-204 (2012) · Zbl 1328.92016
[20] Grillo, A.; Federico, S.; Wittum, G., Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Linear Mech., 47, 388-401 (2012)
[21] Gu, W. Y.; Lai, W. M.; Mow, V. C., A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors, J. Biomech. Eng., 120, 169-180 (1998)
[22] Guterl, C. C.; Hung, C. T.; Ateshian, G. A., Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage, J. Biomech., 43, 1343-1350 (2010)
[23] Helmlinger, G.; Netti, P. A.; Lichtenbeld, H. C.; Melder, R. J.; Jain, R. K., Solid stress inhibits the growth of multicellular tumor spheroids, Nat. Biotech., 15, 778-783 (1997)
[24] Huggins, M. L., Some properties of solutions of long-chain compounds, J. Phys. Chem., 46, 151-158 (1942)
[25] Humphrey, J. D.; Rajagopal, K. R., A constrained mixture model for growth and remodeling of soft tissues, Math. Mod. Meth. Appl. Sci., 12, 407-430 (2002) · Zbl 1021.74026
[26] Hong, W.; Zhao, X.; Suo, Z., Large deformation and electrochemistry of polyelectrolyte gels, J. Mech. Phys. Solids, 58, 558-577 (2010) · Zbl 1244.82089
[27] Jain, R. K., Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039-3051 (1987)
[28] Jain, R. K.; Martin, J. D.; Stylianopoulos, T., The role of mechanical forces in tumor growth and therapy, Annu. Rev. Biomed. Eng., 16, 321-346 (2014)
[29] Lai, W. M.; Hou, J. S.; Mow, V. C., A triphasic theory for the swelling and deformation behaviors of articular-cartilage, J. Biomech. Eng., 113, 45-258 (1991)
[30] Levental, K. R.; Yu, H.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T., Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, 139, 891-906 (2009)
[31] Levick, J. R., Flow through interstitium and other fibrous matrices, Q. J. Exp. Physiol., 72, 409-438 (1987)
[32] Lin, S. Z.; Li, B.; Feng, X. Q., A dynamic cellular vertex model of growing epithelial tissues, Acta Mech. Sin., 33, 250-259 (2017) · Zbl 1372.92017
[33] Loret, B.; Simões, F. M.F., A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues, Eur. J. Mech. A/Solids, 24, 757-781 (2005) · Zbl 1125.74360
[34] Lucantonio, A.; Nardinocchi, P.; Teresi, L., Transient analysis of swelling-induced large deformations in polymer gels, J. Mech. Phys. Solids, 61, 205-218 (2013)
[35] Mascheroni, P.; Stigliano, C.; Carfagna, M.; Boso, D. P.; Preziosi, L.; Decuzzi, P.; Schrefler, B. A., Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model, Biomech. Model. Mechanobiol. (2016), doi:10.1007/s10237-015-0755-0
[36] Mow, V. C.; Holmes, M. H.; Lai, W. M., Fluid transport and mechanical properties of articular cartilage: a review, J. Biomech., 17, 377-394 (1984)
[37] Netti, P. A.; Berk, D. A.; Swartz, M. A.; Grodzinsky, A. J.; Jain, R. K., Role of extracellular matrix assembly in interstitial transport in solid tumors, Cancer Res, 60, 2497-2503 (2000)
[38] Padera, T. P.; Stoll, B. R.; Tooredman, J. B.; Capen, D.; di Tomaso, E.; Jain, R. K., Pathology: cancer cells compress intratumour vessels, Nature, 427, 695 (2004)
[39] Paszek, M. J.; Zahir, N.; Johnson, K. R.; Lakins, J. N.; Rozenberg, G. I., Tensional homeostasis and the malignant phenotype, Cancer Cell, 8, 241-254 (2005)
[40] Plodinec, M.; Loparic, M.; Monnier, C. A.; Obermann, E. C.; Zanetti-Dallenbach, R., The nanomechanical signature of breast cancer, Nat. Nanotech., 7, 757-765 (2012)
[41] Provenzano, P. P.; Cuevas, C.; Chang, A. E.; Goel, V. K.; Von Hoff, D. D.; Hingorani, S. R., Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma, Cancer Cell, 21, 418-429 (2012)
[42] Rahman, M. M.; Feng, Y.; Yankeelov, T. E.; Oden, J. T., A fully coupled space-time multiscale modeling framework for predicting tumor growth, Comput. Methods Appl. Mech. Eng., 320, 261-286 (2017) · Zbl 1439.74209
[43] Roose, T.; Netti, P. A.; Munn, L. L.; Boucher, Y.; Jain, R. K., Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res., 66, 204-212 (2003)
[44] Sciumè, G.; Santagiuliana, R.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A., A tumor growth model with deformable ECM, Phys. Biol., 11, 65004 (2014)
[45] Sinkus, R.; Lorenzen, J.; Schrader, D.; Lorenzen, M.; Dargatz, M.; Holz, D., High-resolution tensor MR elastography for breast tumour detection, Phys. Med. Biol., 45, 1649-1664 (2000)
[46] Stylianopoulos, T.; Martina, J. D.; Chauhan, V. P.; Jain, S. R.; Diop-Frimpong, B., Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors, Proc. Natl. Acad. Sci. U.S.A., 109, 15101-15108 (2012)
[47] Stylianopoulos, T.; Martin, J. D.; Snuderl, M.; Mpekris, F.; Jain, S. R.; Jain, R. K., Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse, Cancer Res., 73, 3833-3841 (2013)
[48] Sullivan, R. R.; Hertel, K. L., The permeability method for determining specific surface of fibers and powders, Adv. Colloid Sci., 1, 37-80 (1942)
[49] Swartz, M. A.; Fleury, M. E., Interstitial flow and its effects in soft tissues, Annu. Rev. Biomed. Eng., 9, 229-256 (2007)
[50] Truesdell, C.; Noll, W., The Non-linear Field Theories of Mechanics (2004), Springer: Springer New York · Zbl 0779.73004
[51] Tse, J. M.; Cheng, G.; Tyrrell, J. A.; Wilcox-Adelman, S. A.; Boucher, Y.; Jain, R. K.; Munn, L. L., Mechanical compression drives cancer cells toward invasive phenotype, Proc. Natl. Acad. Sci. U.S.A., 109, 911-916 (2012)
[52] Vernerey, F. J., A mixture approach to investigate interstitial growth in engineering scaffolds, Biomech. Model Mechanobiol., 15, 259-278 (2016)
[53] Voutouri, C.; Mpekris, F.; Papageorgis, P.; Odysseos, A. D.; Stylianopoulos, T., Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors, PLoS One, 9, Article e104717 pp. (2014)
[54] Voutouri, C.; Polydorou, C.; Papageorgis, P.; Gkretsi, V.; Stylianopoulos, T., Hyaluronan-derived swelling of solid tumors, the contribution of collagen and cancer cells and implications for cancer therapy, Neoplasia, 18, 732-741 (2016)
[55] Wise, S. M.; Lowengrub, J. S.; Frieboes, H. B.; Cristini, V., Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method, J. Theor. Biol., 253, 524-543 (2008) · Zbl 1398.92135
[56] Xue, S. L.; Li, B.; Feng, X. Q.; Gao, H., Biochemomechanical poroelastic theory of avascular tumor growth, J. Mech. Phys. Solids, 94, 409-432 (2016)
[57] Xue, S. L.; Li, B.; Feng, X. Q.; Gao, H., A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation, J. Mech. Phys. Solids, 104, 32-56 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.