×

A wavelet based space-time adaptive numerical method for partial differential equations. (English) Zbl 0768.65062

A space-time adaptive algorithm based on wavelet orthonormal bases is described for solving the heat equation, the linear advection equation and the one-dimensional Burgers equation. The stability of this algorithm is studied. Numerical results are presented.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] R. BANK, A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. Zbl0467.65054 · Zbl 0467.65054
[2] G. BATTLE, A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. MR895218
[3] M. BERGER and P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. Zbl0665.76070 · Zbl 0665.76070 · doi:10.1016/0021-9991(89)90035-1
[4] M. BERGER and J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. Zbl0536.65071 MR739112 · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[5] G. BEYLKIN, On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. Zbl0766.65007 MR1191143 · Zbl 0766.65007 · doi:10.1137/0729097
[6] G. BEYLKIN, R. COFIMAN and V. ROKHLIN, Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989.
[7] A. BRANDT, Math. Comp., 31, p. 333, 1977, New York, 1981. Zbl0373.65054 MR431719 · Zbl 0373.65054 · doi:10.2307/2006422
[8] I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. Zbl0644.42026 MR951745 · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[9] B. LE MESURIER, G. PAPANICOLAOU, G. SULEM and P. SULEM, Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. Zbl0694.35206 MR969030 · Zbl 0694.35206 · doi:10.1016/0167-2789(88)90052-8
[10] P. G. LEMARIE, Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. Zbl0758.42020 MR964171 · Zbl 0758.42020
[11] J. LIANDRAT and Ph. TCHAMITCHIAN, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990. · Zbl 0745.65076
[12] S. MALLAT, Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. Zbl0686.42018 MR1008470 · Zbl 0686.42018 · doi:10.2307/2001373
[13] S. MALLAT, A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. Zbl0709.94650 · Zbl 0709.94650 · doi:10.1109/34.192463
[14] Y. MEYER, Ondelettes et opérateurs, Hermann, Paris 1990. Zbl0694.41037 MR1085487 · Zbl 0694.41037
[15] Y. MEYER, Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. MR1133374
[16] J. STROMBERG, A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. Zbl0521.46011 · Zbl 0521.46011
[17] J.-C. XU and W.-C. SHANN, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. Zbl0771.65050 · Zbl 0771.65050 · doi:10.1007/BF01385851
[18] [18] H. YSERENTANT, On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. Zbl0608.65065 · Zbl 0608.65065 · doi:10.1007/BF01389538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.