zbMATH — the first resource for mathematics

Anisotropic pressures in very dense magnetized matter. (English) Zbl 1181.85038
The authors consider self gravitating matter in an external homogeneous magnetic field and investigate how anisotropic pressure may occur. To that end they first describe features of quantum mechanics and quantum statistics being used Then the transverse momentum and pressure for the electron gas, the neutron gas, and magnetized strange quark matter are derived. An outline of thermodynamics of anisotropic systems is given. The deformation of bodies due to anisotropy and self magnetization are considered. The results may apply to white dwarfs, neutron stars, and quark stars.

85A15 Galactic and stellar structure
80A10 Classical and relativistic thermodynamics
78A35 Motion of charged particles
81V05 Strong interaction, including quantum chromodynamics
Full Text: DOI
[1] DOI: 10.1016/S0370-1573(96)00042-7 · doi:10.1016/S0370-1573(96)00042-7
[2] DOI: 10.1140/epjc/s2003-01192-6 · Zbl 01943481 · doi:10.1140/epjc/s2003-01192-6
[3] DOI: 10.1103/PhysRevLett.84.5261 · doi:10.1103/PhysRevLett.84.5261
[4] Khalilov V. R., Phys. Rev. D 65 pp 1–
[5] DOI: 10.1016/j.astropartphys.2004.02.007 · doi:10.1016/j.astropartphys.2004.02.007
[6] DOI: 10.1103/PhysRevD.65.064009 · doi:10.1103/PhysRevD.65.064009
[7] DOI: 10.1142/S0217751X06031715 · Zbl 1099.81572 · doi:10.1142/S0217751X06031715
[8] DOI: 10.1103/PhysRevD.77.025001 · doi:10.1103/PhysRevD.77.025001
[9] Rey A. U., Gen. Relativ. Gravit.
[10] DOI: 10.1142/S0218271805007401 · Zbl 1081.85002 · doi:10.1142/S0218271805007401
[11] DOI: 10.1103/PhysRevC.77.015807 · doi:10.1103/PhysRevC.77.015807
[12] DOI: 10.1088/0256-307X/21/11/012 · doi:10.1088/0256-307X/21/11/012
[13] DOI: 10.1142/S0218271805007516 · Zbl 1087.85001 · doi:10.1142/S0218271805007516
[14] Johnson M. A., Phys. Rev. 76 pp 282–
[15] DOI: 10.1103/PhysRevD.54.1306 · doi:10.1103/PhysRevD.54.1306
[16] H. Pérez Rojas and A. E. Shabad, Kratkie Soobcheniya po Fizike 7 (Lebedev Institute Reports, Allerton Press, 1976) p. 16.
[17] Landau L. D., Electrodynamics of Continuous Media (1965)
[18] Jackson J. D., Classical Electrodynamics (1966) · Zbl 0114.42903
[19] DOI: 10.1016/0370-2693(96)00430-3 · doi:10.1016/0370-2693(96)00430-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.