Chang, Herng-Hua Numerical investigation of electrostatic interactions in nanoscale substances based on finite-size particle simulation. (English) Zbl 1248.82101 Phys. Lett., A 374, No. 36, 3710-3714 (2010). Summary: We use the optimized finite-size particle techniques derived from plasma simulations to investigate the electrostatic interactions in nanoscale substances. In conjunction with electron tunneling, the substance surface is modeled as a potential well that confines simulated electrons for reaching equilibrium in an electrostatic system governed by Poisson’s equation. This scheme avoids the mathematical difficulty of handling sophisticated boundary conditions at the interface and easily treats complicated shapes. We demonstrate the performance of the proposed method by simulating millions of electrons propagating in isolated substances at nanoscale. Numerical results are consistent with theoretical predictions of electrostatic properties in equilibrium. MSC: 82D80 Statistical mechanical studies of nanostructures and nanoparticles 78A30 Electro- and magnetostatics 68U20 Simulation (MSC2010) Keywords:simulation; electrostatic equilibrium; nanostructure; electron tunneling PDF BibTeX XML Cite \textit{H.-H. Chang}, Phys. Lett., A 374, No. 36, 3710--3714 (2010; Zbl 1248.82101) Full Text: DOI References: [1] Demchenko, D.O.; Wang, L.-W., Nano lett., 7, 10, 3219, (2007) [2] Wang, Y.; Newaz, A.K.M.; Wu, J.; Solin, S.A.; Kavasseri, V.R.; Jin, N.; Ahmed, I.S.; Adesida, I., Appl. phys. lett., 92, 26, 262106, (2008) [3] Maksymovych, P.; Jesse, S.; Yu, P.; Ramesh, R.; Baddorf, A.P.; Kalinin, S.V., Science, 324, 1421, (2009) [4] Cervera, J.; Ramirez, P.; Mafe, S., Phys. lett. A, 374, 4, 610, (2010) [5] Woodside, M.T.; McEuen, P.L., Science, 296, 1098, (2002) [6] Califano, F.; Lontano, M., Phys. rev. lett., 95, 24, 245002, (2005) [7] Naji, A.; Podgornik, R., Phys. rev. E, 72, 041402, (2005) [8] Slutsker, J.; Artemev, A.; Roytburd, A., Phys. rev. lett., 100, 8, 087602, (2008) [9] Zhu, Y.F.; Zheng, W.T.; Jiang, Q., Appl. phys. lett., 95, 8, 083110, (2009) [10] Kim, H.; Kim, J.; Yang, H.; Suh, J.; Kim, T.; Han, B.; Kim, S.; Kim, D.S.; Pikhitsa, P.V.; Choi, M., Nat. nanotechnol., 1, 117, (2006) [11] Silan, J.L.; Niemann, D.L.; Ribaya, B.P.; Rahman, M.; Meyyappan, M.; Nguyen, C.V., Appl. phys. lett., 95, 13, 133111, (2009) [12] Cleuziou, J.-P.; Wernsdorfer, W.; Bouchiat, V.; Ondarcuhu, T.; Monthioux, M., Nat. nanotechnol., 1, 53, (2006) [13] Han, Y.; Grier, D.G., Phys. rev. lett., 91, 3, 038302, (2003) [14] Hackens, B.; Martins, F.; Ouisse, T.; Sellier, H.; Bollaert, S.; Wallart, X.; Cappy, A.; Chevrier, J.; Bayot, V.; Huant, S., Nat. phys., 2, 826, (2006) [15] Sukhorukov, E.V.; Jordan, A.N.; Gustavsson, S.; Leturcq, R.; Ihn, T.; Ensslin, K., Nat. phys., 3, 243, (2007) [16] Li, D.; Ning, C.Z., Nano lett., 8, 12, 4234, (2008) [17] Li, B.; Horiuchi, R., Phys. rev. lett., 101, 21, 215001, (2008) [18] Kumar, R.; Shukla, A., Phys. lett. A, 373, 32, 2882, (2009) [19] Huber, R.; Tauser, F.; Brodschelm, A.; Bichler, M.; Abstreiter, G.; Leitenstorfer, A., Nature, 414, 286, (2001) [20] Maggs, A.C.; Rossetto, V., Phys. rev. lett., 88, 19, 196402, (2002) [21] Chang, H.-H., Phys. rev. E, 78, 5, 056704, (2008) [22] Beiser, A., Concepts of modern physics, (2003), McGraw-Hill Singapore · Zbl 0133.17003 [23] Dawson, J.M., Rev. mod. phys., 55, 2, 403, (1983) [24] Birdsall, C.K.; Fuss, D., J. comput. phys., 3, 494, (1969) [25] Rogers, B.; Pennathur, S.; Adams, J., Nanotechnology: understanding small systems, (2008), CRC Press Boca Raton · Zbl 1185.82001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.